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ABSTRACT

Computers have revolutionized modern society and have provided us with immense calculating power.
In recent decades, a new revolution in computing technology has begun to develop, in which the
classically inexplicable properties of quantum physics are utilized to speed up certain computations. A
prominent example of such a computational speed-up is Shor’s algorithm for factorization, in which
factorizing large prime numbers could take several minutes on a quantum computer, compared with
thousands of years on a classical one.

The fundamental unit of information in quantum computation is a qubit, the quantum analog of
a classical computer’s bit. Ions stored in radio-frequency traps are a promising platform for storing
and manipulating qubit information. In order for quantum computation to outperform its classical
counterpart in certain algorithms, thousands of qubits will be required. As the field of trapped-ion
quantum computation is still in its infancy, reaching such numbers of qubits is still a technological
challenge.

This work documents the design and experimental use of a trapped ion quantum computer based
on a cryogenic segmented surface ion trap, capable of trapping “°Ca*and #Sr*ions. The apparatus
is designed to demonstrate the prospects of scaling up the number of usable qubits. Three distinct
projects are presented in this thesis.

Firstly, we investigate a property of radio-frequency traps known as RF heating, an adverse coupling
between ions and the RF field required to operate the trap. This coupling perturbs an ion’s motion and
renders them useless for quantum computation. We present a conceptual and theoretical background
of RF heating, perform ion-motion simulations and experimentally confirm our findings. Secondly, we
investigate transport operations of trapped ions. As ion-based quantum computers are envisioned to
have dedicated regions in the trap for various tasks (such as qubit manipulation, ion-ion coupling,
storage, cooling, and loading), traps are designed to be able to move ions from region to region. We
describe and experimentally realize techniques to perform and optimize several types of transport
operations. Lastly, we extend the current toolbox of quantum computation by introducing a method of
qubit control that combines elements of classical and quantum computation: we apply irreversible
boolean operations to a quantum system. Such techniques could simplify quantum error correction
protocols.
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INTRODUCTION

The development of the field of quantum physics over the past decades has been so astounding that it
has become one of the greatest clichés for Ph.D. theses with the word ‘quantum’ in the title to start the
introduction with some permutation of that statement. This thesis is no exception: The past decades
have seen an unbelievable growth in the study and application of quantum properties of well-controlled
systems [1], which less than a century ago was deemed to be impossible to experimentally reach and
manipulate (Erwin Schrédinger compared working with individual quanta to raising “Ichthyosauria
in a zoo” [2]). Quantum mechanics, the study of light and matter at the atomic scale, provides theories
to help us understand microscopic systems, but has applications in the macroscopic ‘classical’ world [3],
and therefore attracts great interest from the scientific community.

One of the many envisioned applications of quantum mechanics is its inclusion in the field of
computation [4]. It is hard to overstate the power and capabilities of computers, both for research and
public use. Computers open up a world of possibilities and applications, ranging from solving complex
non-linear equations, to encrypting and decrypting data, to transmitting cat videos. Such applications
are only limited by computational resources such as the available memory, processing speed, and
energy supply. These finite resources make certain tasks a near impossibility with conventional classical
computational techniques [5].

Fortunately, there are motivated minds that look for alternate routes around those conventional
techniques. Richard Feynman is one example of such a mind: he discussed the prospect of using
computers to simulate quantum dynamics of collections of interacting particles [6]. The limitation
lies in the fact that a collection of N quantum particles can exist in any combination of 2V different
states. Simulating the full dynamics of such a system, including possible sources of external noise,
could require solving a system of up to 2 coupled equations. Storing information about a system
containing N > 130 particles would already require more bits than there are particles in the universe
— and we’d have to find whole other universes worth of particles to do any kind of calculation with
all of that information. Feynman therefore proposed that for a device to realistically handle such a
simulation, “let the computer itself be built of quantum mechanical elements which obey quantum
mechanical laws” [6]. In such a simulation, known as analog quantum computation (QC), a system of
particles with controllable quantum states and interactions are used to mimic, thus simulate, those
properties of another less-controllable system [7, 8]. Feynman’s ideas were seminal, but at the time
(1981), purely theoretical. It would take a few more decades before such simulators made their way
from textbooks to laboratories.

In the meantime, another branch of quantum computers was founding its roots: digital QC [9]. This
type of computation, compared with analog QC, is fundamentally more similar to classical computation
in that it operates through logical operations applied sequentially to binary encoded information
carriers. In contrast, however, quantum physics opens up a new paradigm of information processing,
by allowing information carriers to make use of properties of quantum mechanics that do not have a
classical analog: superposition and entanglement. Harnessing the quantum analogue of bits, qubits,
allows us to perform specific computation tasks on timescales notably shorter than required of classical
computers.

The go-to example of a task whose computational cost is greatly reduced by the inclusion of
quantum mechanics is Shor’s algorithm for prime factorization [10]. Prime factorization of large
numbers is notoriously time-consuming for classical computers, which is one of its integral features in
the scope of data encryption: Decryption of such data requires the near-impossible task of factorizing
large numbers. Running Shor’s algorithm on a quantum computer, (specifically a subroutine known
as period-finding), however, has the potential to lower the computational time required for this task,
benefiting from polynomial scaling of number of required operations per number of digits of the
number to be factorized, compared to an exponential scaling for the best known classical algorithm

[11].



INTRODUCTION

In the past decade, tremendous progress has been made in demonstrating Shor’s algorithm on
quantum computers [12—14]. However, it is worth keeping perspective: such implementations have
been able to determine the prime factors of numbers as large as 21 [13, 14], a value that classical
computers have little difficulty working with®. That statement is not intended to downplay these
achievements, but to emphasize the immense complexity in controlling a quantum system well enough
to perform calculations that aim to one day compete with classical computers. We are now in the
infancy of a new era of information technology, and are overcoming challenges and obstacles to
work towards a regime where digital quantum computers undeniably outperform their classical
counterparts. To reach this goal, there exist many promising platforms of quantum computers, such as
solid-state superconductors [15], photonics [16], neutral atoms [17], implanted defects in solid-state
crystals [18], and trapped ions. This thesis explores the prospects of using trapped ions as qubits for
quantum computation [19].

Trapped ions have several properties that make them promising candidates to host qubits: they
have long-lived electronic levels that can be used to encode the qubit, which can be manipulated
using optical or microwave fields [20]. Other electronic levels have short-lived transitions, ideal for
rapid readout of the qubit state. Ions, being charged particles, can be isolated from the surrounding
environment through the use of dynamic electric fields [21]. This separation from the environment is
crucial, because it is a source of uncontrolled perturbation of the qubit state. Another advantage of
ions being charged, is that their mutual Coulomb interaction couples their motion, which provides a
mechanism to exchange information and enable qubit entanglement.

One example of a device that produces the required dynamic electric fields to confine ions is
known as a Paul trap [22], and comes in many shapes and sizes [23]. For the purpose of trapped-ion
based quantum computation, Paul traps are generally a three-dimensional configuration of electrodes
designed to stably confine ions along one dimension. Ions, separated by Coulomb repulsion, form a
chain, referred to as an ion string. Laser beams can be focused down to manipulate the quantum state
of each ion individually, all ions collectively, or some combination.

Using that concept of trapped-ion qubit manipulation, decrypting RSA-encrypted data, which
involves factorizing numbers that are hundreds of digits, requires stably trapping some thousands —if
not tens of thousands— of ions along a chain, probing them with a series of well-timed, well-aimed
laser pulses, and reading out their final states. This is, of course, a drastic understatement of the
complexity involved, as attested by the latest attempts to factorize the number 21 on a quantum
computer. Many challenges stand in the way of building a quantum computer that competes with
classical ones, most of which are related to reducing sources of noise that perturb the qubits’ state. As
the number of qubits and qubit operations in a quantum computer increases, so too does the error
induced by these sources of noise.

One of the major envisioned obstacles in scaling up the number of usable qubits is that the single
trapping potential that is produced by a traditional three-dimensional Paul trap is going to be
overcrowded with ions. It becomes more challenging to keep ions in their crystalline structure along
a single chain, and the increased density of motional modes in frequency space limit the success
and speed of entangling operations. A proposed path towards scaling up the number of qubits
for trapped-ion quantum computation is to use ion traps that contain multiple separated trapping
regions, each containing a manageable amount of trapped ions. In 2002, Kielpinski et al. [24] proposed
an array-like ion trap architecture, in which electrodes that carry the voltages required to produce
ion-trapping potentials are confined to a two-dimensional surface. Such a Paul trap, which resembles
the array-like layout of a charge-coupled device (CCD) chip, hosts numerous trapping regions with
dedicated tasks, such as memory storage, qubit interaction, and state readout. This type of segmented
surface trap chip, known as the Quantum Charge-Coupled Device (QCCD) architecture?, remains one
of the prominent visions of what scalable trapped-ion quantum information processing (QIP) will
resemble [25-27].

Within the vision of the QCCD architecture, the aim is for an ion trap to produce a potential landscape
in which separated trapping locations each form a quantum register and can be independently
manipulated through varying electrode voltages. Independent control of ion registers requires that

1 An exhaustive brute-force search on a cheap classical computer takes less than a millisecond to find 21 =7 x 3.
2 Note 1 in Appendix e



INTRODUCTION

the separation between a register and an electrode is at most on the same order of magnitude as
the separation between registers. This requires ions to be placed relatively close to trap electrodes,
compared to most three-dimensional ion traps that have only one trapping region. Herein lies one of
the prominent difficulties in surface trap-based quantum computation: electric field noise emanating
from nearby surfaces adds thermal energy to ions, which negatively correlates with the success of
many quantum operations [28]. The rate at which ions gain motional energy, the heating rate, due to
surface electric field noise scales very unfavorably with the distance between ions and surfaces, more
than an inverse-cubic scaling [29]. The design and fabrication of suitable surface trap architectures that
minimize the influence of surface-induced electric field noise (along with a host of other obstacles) is
an ongoing field of research in the ion-trap community [30-38].

An increase in ions’ motional energy can be combated by laser-cooling techniques. Such techniques
cannot be directly applied during computation sequences, since the access to the ions’ electronic levels
required for cooling disturbs the qubit state. One can bypass this restriction by introducing a second
ion species into the register, which does not take part in computation and can be freely laser-cooled
without affecting the qubits. Coulomb interaction couples the motion of qubits to that of the coolant
species, thus remain cooled, a process known as sympathetic cooling [39—42].

Another method of maintaining a low motional energy of trapped ions is by cooling down the
trap surface, which reduces the electric field noise emanating from it [43]. For this reason, surface
traps are often operated at cryogenic temperatures. Cryogenic environments come with the additional
benefit that they improve the vacuum pressure by orders of magnitude compared to room temperature
setups [44], reducing the chance that particles in the background gas interfere with experiments by
colliding with ions. Improved vacuum due to cryo-pumping reduces the amount of time required to
bring a vacuum chamber down to acceptable pressures after installing a trap. It can take months after
installing a trap into a room-temperature setup before it is ready for ion-trapping, whereas cryogenic
setups could potentially be ready for loading ions within a day. Since the performance of surface traps,
especially those with novel designs, is to-date often unpredictable, having a short turn-around time
for switching out traps is beneficial.

When used for quantum computation, cryostats, ion traps, and experimental hardware are designed
to minimize errors that undesirably influence a qubit’s state. Despite the incredible technological
achievements in such designs, qubits can never be perfectly protected from sources of noise. To
ensure QC can still function in the presence of sources of error, quantum error correction (QEC) is a
requirement [11]. QEC is, as the name suggests, the quantum variant of error correction schemes used
in information theory to protect data from errors. The current technological status of trapped-ion
quantum computation is at the point that errors induced by proposed correction algorithms [45-48]
outweigh the ability of those algorithms to fix errors. Fault-tolerant QC requires both technological
improvements to reduce sources of error, and improved error correction algorithms to combat those
that remain [49-51].

Research in the field of scalable quantum information processing is tasked with implementing techno-
logical improvements and QEC protocols, to enable an increase of the number of trapped ion qubits
from tens to hundreds to thousands, while avoiding and/or correcting errors. Many challenges must
be dealt with, ranging from operating in cryogenic environments, to trap design and fabrication, to
scaling of experimental hardware, to suppressing influence from noisy environments. This thesis
documents a contribution to a vast field aiming to scale up the current paradigm of digital quantum
computation with trapped ion qubits.

The work in this thesis details the design, development, and use of a cryogenic surface ion trap, designed for
mixed-species operation, with the ultimate goal of advancing the field of scalable quantum information processing.

The thesis is structured as follows3: Chapter 1 recursively introduces the layout of the rest of this
thesis. Chapter 2 gives a generalized overview of how ions are trapped and used as qubits for quantum
computation. The core concepts of ion traps and their confining potentials are introduced, and a
description of the motion of ions within such potentials is given. We describe how laser-ion interaction
is used to manipulate an ion’s electronic state, how this type of interaction is practically used to control

3 Note 2 in Appendix e
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qubits, and how they are used within experimental sequences. Finally, experimental techniques that
characterize qubits and the properties of surface traps are discussed.

Chapter 3 gives an overview of the experimental setup, introducing the cryogenic apparatus, the
laser setup, the control software, and the surface traps designed and used throughout the course of
this thesis. Experimental characterization of the performance of the most recent iteration of surface
traps in our setup are presented.

Chapter 4 discusses numerical simulations and experimental results of a phenomenon unique to Paul
traps that causes trapped ions to gain energy in specific regimes of ionic motion. This phenomenon,
known as RF heating, can make ion motion chaotic and unpredictable, and regularly disrupts trapped
ion experiments. Such disruptions are increasingly detrimental as the number of qubit registers
increases. A solid understanding and effective strategies to manage the adverse effects of RF heating
are therefore imperative for scalable quantum computation. The chapter investigates the physical
origin of RF heating, and makes sense of the underlying chaos to produce accessible and generalized
models that predict energy change rates of ions. Suggestions on recooling strategies are made, based
on numerical simulations, which are experimentally verified.

Chapter 5 focuses on one of the most distinguishing features that makes segmented surface traps a
good candidate for scalable QC: the ability to physically transport trapped ions during computional
sequences. The main strategies for shuttling ions and splitting ion chains are discussed. Furthermore,
experimental results of an ion reordering operation, ion crystal rotations, are shown, including the
calibration routines required to realize them.

In Chapter 6, we explore a novel approach to qubit control, which extends the the current toolbox of
quantum operations used within QC. The methods operate in a regime where quantum and classical
control of qubits is combined, allowing for controlled non-unitary qubit operations. We discuss the
engineering of a gate applied to trapped ions that generates state transfer only to specifically chosen
initial states. In stark contrast with traditional QC gates, this state transfer is uni-directional, enabled
by the dissipative process of sympathetic cooling. The primary envisioned application for this process,
for which we have coined the term dissipation through engineered resonance, is in QEC, where it aims to
circumvent the complications involved in non-destructive readout of error syndromes with a single
non-unitary correction operation. Although a full implementation of this tool for QEC is technically
challenging, we demonstrate the viability of the methods, through a proof-of-principle investigation
using another less demanding type of non-unitary operation: we apply the tools of dissipation through
engineered resonance to produce classical boolean logic gates on a quantum system.
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It has been written for the technologist, and is not addressed in any sense to the pure mathematician, for whom I
am not qualified to write. [...] Although, by virtue of necessity, the technologist may occasionally deviate from
the narrow path followed rigorously by the pure mathematician, it must not be forgotten that the consequences of
such deviation may be practical results of considerable benefit to the community at large.

— N.W. McLachlan, Theory and Application of Mathieu Functions

This section gives an overview of how trapped ions are used as qubits for quantum computation. In
Section 2.1, we discuss how Paul traps confine ions in stable positions, while isolating them from the
surrounding environment. Section 2.2 covers how the electronic states of trapped ions encode qubits,
and how qubit states are manipulated and read out using electromagnetic fields. Finally, in Section 2.3,
we discuss typical methods of characterizing performance specifications of trapped ions for use in
quantum computation.

2.1 ION TRAPPING

Ions are charged particles, and therefore experience a force in the presence of an electric field. Paul
traps [22], also known as radio-frequency (RF) traps, use a combination of static and oscillating electric
fields to control and confine the position of ions, outlined below.

In this section, we start with a general overview of how electric fields can generate confining
potentials for charged particles. Then, a common trap design, the macroscopic linear Paul trap,
is introduced. Such a trap can store a linear chain of ions, an ideal configuration when used as
individually addressable qubits. However, a macroscopic linear trap is not considered to be a scalable
solution for ion-based quantum computation. We thus introduce another trap design as a promising
candidate for scalable quantum computation, the planar segmented trap.

2.1.1  RF trap overview

In order to confine a charged particle at some point in space, one would desire to generate a static
(DC) field that produces confinement in all three dimensions around that point. One of the most
straightforward smooth confining potentials is a static harmonic potential, which corresponds to form

1
Vbe = 5 (zxxrjzc + ocyr§ + zxzrg) (2.1)

for positions 7 in an arbitrary orthogonal basis k € {x,y,z}. Confinement in all dimensions is achieved
when the field curvatures aj are positive for all k. Unfortunately, Maxwell’s equations prohibit this,
since V2Vpc = 0 requires that Y, a = 0. Therefore, at least one of the values of a; must be negative,
and thus at least one axis will be anti-confining.

A Paul trap gets around this limitation by introducing, in addition to Vpc, a radio-frequency (RF)
field, with potential Vgg. If this potential is harmonic in the same orthogonal basis as Vpc, and centered
around the same position, this RF field can be expressed as

1
Vrr = > (‘er,% + [Syr§ + [321’%) cos(QRrt) (2.2)

with time ¢, and field curvatures Sy oscillating at a frequency Qgg.
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A single charged particle, with charge g, mass m, and at position 7 = {ry, Ty, T’z }, experiences a force
F due to the combined potential V1ot = Vpc + VRE, given by F= —qV V1ot. The equations of motion,

F= mgitf , are separable in each dimension, and are given by
d?r
= L (@t prcos(Opet)) i @3)

This equation can be written as

2rk

Ikt [~ 29cos(20)] 7 = 0, (2.4
X
using the substitutions ¢ = 2 /Qgp, and

0 — 9% _ 29P«
k mO%e” mO%e

(2.5)

Equation 2.4 is known as the Mathieu equation, with a; and gq; aptly named Mathieu 4 and
g parameters’. Specific combinations of the a2 and g parameters lead to solutions of the Mathieu
equations where the particle’s motion is bounded [52] and are considered stable. Stable solutions
can be analytically expressed as an infinite sum of trigonometric functions, whose coefficients are
determined by infinitely continued fractions [53-55]. Ion traps are generally operated in a regime
where a; < gx < 1, where luckily the infinite sums of infinite fractions can, by approximation, be
truncated to a more intuitive equation of motion?:

T~ rlgo) cos(wyt) (1 + % cos(QRFt)> . (2.6)
Here, r]EO) is an amplitude that depends on initial conditions, and wy is a frequency whose exact value
also requires a continued fraction to calculate exactly3. The same a; and g restriction as before allows
us to approximate wy as [55]

2
wy ~ % ai + qz—k (2.7)
For sufficiently small 2 and g parameters, we have that w;, < Ogg. It is thus apparent that the motion
described by Eq. 2.6 has two distinct timescales: The motion corresponding to the frequency wy is
known as secular motion, and the motion at Qg is known as micromotion. This spectral separation (and
the fact that in typical ion-trapping operation the micromotion amplitude is smaller than that of the
secular motion), one can simplify an ion’s motion by neglecting the higher-frequency micromotion.
This is a useful simplification, because then the motion of an ion trapped in an RF trap can be seen
as harmonic oscillator, with oscillation frequency wy. We will see in Section 2.2.6 that this harmonic
motion plays a fundamental role in qubit manipulation. On the other hand, we will see in Chapter 4
that the simplification of neglecting micromotion is not always justified.
Starting from the assumption that a trapped ion has only harmonic motion, 7y, = r,({o) cos(wkt), we
can derive an effective static potential V1, that would describe that motion*. Once again using the
equations of motion, —qV V= m¥, with 7 = —a),%rk, we find

N 1 mw?
Vot = Z f—kr% (2.8)

T2 4

1 Note 3 in Appendix e
2 Note 4 in Appendix e
3 Note 5 in Appendix e
4 Note 6 in Appendix e
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V1ot can be written as the sum of the DC potential Vpc and an effective, time-independent potential
VRF:

2
1mwy ,

Voc+ Vee =) 5 Tk (2.9)
X q

Substituting wy with Eq. 2.7 and Eq. 2.5, and substituting Vpc with Eq. 2.1, yields
% q 2.2
VRE = ——— Z[Skrk. (2.10)
4mO2 <

For a final substitution, we define the amplitude of the RF potential to be Vorg = 1/2) ‘Bkr%, which
has the property

|VVore| = /) B33, (2.11)
k

thus giving

|VVO,RF|2 (2.12)

VRF = 2

Am gy
which is known as the pseudopotential approximation [56]. This approximation allows us to view the
total trapping field as if it were a static harmonic potential, capable of confining trapped particles in
all three dimension. The pseudopotential approximation simplifies the analysis of ion positions and
their motional modes.

2.1.2  Linear Paul trap

Now that we have introduced the potentials that are used to confine ions, we can get creative with how
to arrange electrodes to produce those potentials. There exist an abundance of variations of electrode
configurations that produce confining potentials for charged particles [23], many of which have been
realized in practice. However, when the goal is to utilize multiple trapped ions as qubits for quantum
computation, a prevailing trap geometry is a linear trap. The design of a linear trap is such that there
exists one axis that is free of any RF potential gradient. Referring to Eq. 2.2, this corresponds to one
of the values of B being zero. We will choose 5, = 0, without loss of generality, which then sets the
restriction that B, = — . The z-axis is free of RF, and is known as the RF-null. It is desirable to keep
ions close to the RF-null, since along this region the RF field is at a minimum, and thus is the place
where ions experience the least amount of micromotion. A collection of ions, to be used as qubits,
can be stored in a chain along the RF-null, remaining separated from each other due to their mutual
Coulomb interaction.

Producing an RF field with the potential curvatures ; = —B, and B, = 0 can be achieved by placing
four hyperbolic electrodes symmetrically around ry = r, = 0 as shown in Figure 2.1(a), and extending
those electrodes infinitely along the z-axis. Applying an RF voltage to two opposing electrodes
produces the desired potential. In practice, designing perfectly hyperbolic electrodes that extend
to infinity in all dimensions is impractical. Instead, it is only required to produce an approximate
harmonic potential locally around the RF-null, where ions are stored. Simplified electrode structures,
such as rods or blades, are therefore commonly used, depicted by the dashed lines in Figure 2.1(a).
Since the deviation in an ion’s position from the RF-null is, in regular operation, much smaller than
the ion-electrode separation, higher order terms of the potential are negligible, and the field around
the ions can be assumed to be harmonic. The electrodes extend far enough along the z-axis to ensure
that 3, is negligible for the extent of the chain of ions. Specific design of the RF electrodes is based on
machinability and required optical access to the trap center.

We have so far covered confinement of ions in two out of three dimensions, the radial directions. To
confine ions along the z-axis, the axial direction, electrodes with a static voltage are placed at opposing
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Ve (b)
Radial blades
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Figure 2.1: Overview of linear Paul trap geometry (a) An applied voltage on one of two pairs of hyperbolic
electrodes produces a harmonic saddle-potential, indicated by the contour lines. This potential becomes
effectively confining when an oscillating voltage (RF) is applied. In reality, electrodes are not hyperbolic
in shape, but more blade-like, as indicated by the dashed lines. (b) A positive voltage on endcaps
placed on opposing ends of the z-axis provides axial confinement.

ends of the trap, symmetrically around the z-axis. These electrodes, shown in Figure 2.1(b), are known
as end-caps. This type of trap configuration is known as a 3D linear Paul trap. A positive end-cap
voltage produces a positive axial curvature «,. Noting that the sum of the potential curvatures is zero,
Yk &k, and that by symmetry the radial curvatures are equal, we find that the radial curvatures due to
the DC voltage on the endcaps are negative, given by ay = a;, = —a;/2. One must therefore ensure
that the radial confinement produced by the RF electrodes outweighs the anti-confinement of the DC
electrodes. This requirement is often met by default, since the axial confinement is intended to be the
weakest, such that multiple ions preferentially align themselves along this direction.

We denote the distance between the trap center and one of the end-caps as Zy and the distance
between the trap center and one of the RF electrodes as Ryg. We can solve for the field curvatures ay
when a voltage vpc is applied to the trap’s end-caps, by combining the equation for the static harmonic
potential (Eq. 2.1), the restriction ay = ay = —a;/2, and the boundary conditions that Vpc = vpc at
7=(0,0,Zp), and Vpc = 0 at 7 = (Ry,0,0). The curvatures are then calculated> to be

4’UDC

Ny = —ZIXX = —2“]/ = m (2.13)
Similarly, applying an RF voltage with amplitude vgp to the RF electrodes, with the conditions

Vrr = vrr cos(Qgpt) at 7 = (R, 0,0) and Vgg = 0 at 7 = (0, Rp,0) and By = —pB,, and B, = 0, we find

URF
Bx=—Py = R2 (2.14)
0
We express the RF pseudopotential as a sum of effective potential curvatures, Vg = 1/2 Y ﬁkr%. Using

the definition of the pseudopotential Vg in Eqs. 2.11 and 2.12, the effective curvatures are derived to
be

p-=0, px= By =2 nd (2.15)

The choice of electrode placement and voltages described above results in potentials that produce
identical radial secular frequencies, wy = wy. For reliable operation of ions as qubits, this type of
degeneracy is undesirable®, and can be lifted with a bias potential V4, introduced by applying a bias

Often an additional scaling factor, a so-called geometric factor, is introduced to account for the non-hyberbolic shape of the
electrodes.

In particular, Doppler cooling (see Section 2.2.8) becomes inefficient, and state manipulation through motional modes (see
Section 2.2.6) becomes unreliable.

[©XNNNNAN ) |
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DC voltage v}, to the two opposing blades that do not carry an RF voltage. Similar analysis as above
reveals that this bias voltage produces potential curvatures of £2v),/R3 in the two radial directions.
The full potential, using the pseudopotential approximation, is given by:

Viot = Vbc + VRr + W (2.16)
with
UDC 2 2 2
Ve = ———2r; — 15 —r
DC R% —|—ZZ(%( z x y)
2
qURE 2, .2
VRE = —— =5 (ry +13)
mOA:RS y
Up
Vo = o5 (ry—13) (217)
0

2.1.3 Segmented surface traps

The previous section has introduced a general trap architecture which produces potentials that confine
ions in all three dimensions. For use in quantum computation, potentials are set such that multiple
co-trapped ions align themselves in a chain along the RF-null, separated by Coulomb repulsion. We
continue the discussion of ion positions and their motional modes in Section 2.1.4, and then how
trapped ions are used as qubits in Section 2.2. However, while on the topic of trap geometry, and
having introduced the basics of linear trap potentials, we take a small detour to discuss why and how
one would migrate from a blade trap architecture, such as the one discussed in the previous section,
towards what is considered a more scalable trapping solution, the linear segmented surface trap.

The problem of scalability boils down to increasing the number of trapped ions to be used as qubits.
The macroscopic linear trap described in the previous section creates a single trapping region, in
which ions are stored in a chain along the RF-null. Tens of ions can be confined in such a region,
but such a trap is hard-pressed to introduce more ions while maintaining a stable linear chain [57],
in which a one-dimensional chain buckles into a second axis. Keeping a linear chain at higher ion
numbers requires either a higher radial confinement or a lower axial confinement, and both options
come with technical complications. Motional modes (discussed in the following section) grow with ion
number leading to so-called spectral mode crowding. Since shared modes form the basis for ion-ion
communication, it is important that they remain spectrally well-separated.

One solution is to split up the trap geometry such that multiple separate trapping regions are
formed [58, 59]. A small number of ions, typically single digits, can then occupy each trapping site.
Such segmentation involves subdividing the non-RF-carrying blades into electrically isolated sections.
Each section is an electrode whose voltage can be controlled independently. Applying appropriate
voltages to a set of such electrodes produces multiple minima in the potential along the RF-null, with
each minimum a region where ions are trapped. Electrode voltages can be independently adjusted
to precisely control the trapping potential around each ion chain. They can be changed over time,
allowing the physical positions of ion chains to be manipulated, giving rise to ion transport operations,
the topic of Section 5.

Another step towards scalability lies in the ability to utilize not just a single one-dimensional
RF-null as a channel to store ions, but to create an interconnected network of such channels [60-62].
Implementing such a network into a three-dimensional blade trap is technically challenging and poses
limits in optical access. Instead, a two-dimensional trap, known as a surface trap, can be used, which
hosts an interconnected set of rails that serve as channels over which ions can be transported. This
concept follows the Quantum Charge-Coupled Device (QCCD) proposal [24].

Just as with macroscopic blade traps, a multitude of surface trap architectures exist. A commonly
used design is shown schematically in Figure 2.2(a). It's functionality can be intuitively understood
when viewing its electrodes as projections (with a bit of imagination) from the 3D design discussed in
the previous section. Two rails carry RF voltage, and produce the radial pseudopotential, shown in
Figure 2.2(b). The rest of the surface is segmented such that a supply of DC voltages can be applied
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to produce an axial ‘end-cap-like” confinement. In the example in Figure 2.2(a), this corresponds to
applying a positive voltage on the corner electrodes.

DC

Figure 2.2: (a) Example layout of a linear surface trap, which can be seen as a projection from the linear blade
trap. Similar to the 3D blade trap, a surface trap produces a saddle potential, marked by a cross in the
contour plot in (b).

The larger number of DC electrodes in a surface trap compared the non-segmented 3D trap
introduces more degrees of freedom in producing a potential Vpc around the trapping region(s). It is
therefore not as straightforward to produce trapping potentials similar to those as discussed earlier
for the 3D trap. Our method of determining electrode voltages that produce the desired potentials
is covered in Section 2.3, which also discusses characterization of surface traps. First, however, we
discuss what “desired potentials” means, in terms of the motion of ions.

2.1.4 lons in a linear Paul trap - positions and modes

In this section, we give an overview of ions positions and their secular motion in a linear trap. For this
analysis, the pseudopotential approximation is used, and it is assumed that ions have low enough
kinetic energy that their average displacement is much smaller than the mean distance between ions,
such that they form a chain.

The total potential energy Epot of a trapped ion crystal is given by the sum of the trap’s potential
energy Eyap and the interaction energy of the ions Ecqy,

Epot = Etrap + ECoul (2.18)

The Coulomb energy for N ions of charge g; and position 7(!) is

Ecou = 47(6022 qlq] —0) (2.19)

ij>i }1’

with €y the vacuum permittivity, and i and j indices of the N ions.

The total potential energy in the trap is the sum of the potential energies of each ion, Egap =
Y 4 Vot (7). The potential is given by the sum of the DC potential Vpc and the RF pseudopotential
VrE, where we from here on omit the tilde notation that previously distinguished the pseudopotential
from the time-dependent RF potential. Before it was assumed that both the RF and DC potentials
had only quadratic contributions, both with principal axes in the same {x,y,z} basis. Now, for
completeness, we include the possibility that principal axes don’t necessarily follow this basis, and
that the potential minimum is not centered around zero (i.e., there exists a linear component to the
field potential).

A notationally convenient way to express harmonic potentials is with the 3 x 3 curvature matrices,

@g% and ®pc, which are the Hessian of the potentials Vgrr and Vpc. The Hessian of the RF pseudopo-
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tential is indexed (i), since its value is dependent on the mass m; and charge g; of ion i. The potential
VE, originating from an undesired homogeneous electric field, can be expressed by its electric field
vector, E= —VVE.

The trap potential, considered to be harmonic (i.e. no third or higher order polynomial terms) is
given by

N
Etrap_ 2‘71_‘( Td’%;” +5 qu T@pcit!) E (2.20)

i

with the superscript T indicating the vector transpose. In order to satisfy Maxwell’s equation V2Vpc =
0 for static fields, it is required that ®pc satisfies tr{®pc} = 0. The RF pseudopotential does not obey
V2®gg = 0. In a linear trap, it is assumed that there is one dimension along which there is no RF
curvature, the trap’s axial axis. The coordinate basis can be chosen such that the pseudopotential’s
curvature matrix is given by

(2.21)

1
M _ 4 2
Qpr = 4m(i)Q%{F |V VRE [jin 8

S = O
o O O

We denote the factor in front of the matrix as vgl):
Grouping all individual ion positions 7/} into a single vector 7 of length 3N, the equilibrium

positions 7 of all ions can be determined by solving the set of differential equations

=0. (2.22)

(i)

Motional modes and their frequencies w {xyz} Can be obtained by finding the eigenvectors and
eigenvalues of the mass-corrected Hessian matrix of Epot, with masses m;, given by the terms

1 aZ Epot

Hij = T Or-Or
VMt oriorj |
linearized around 7). Stable trapping potentials require real positive eigenvalues ex, and have motional

mode frequencies given by ,/e;q.
For a single trapped ion, the position and motional modes are analytically obtainable. If one can

(2.23)

assume that the principal axes of the DC potential are the same as those of the RF pseudopotential,

then ®pc does not contain off-diagonal elements?. Under this assumption, solving Eq. 2.22, the ion’s
position is given by the terms

= B/ (o + o) (2.24)

and, solving Eq. 2.23, motional mode frequencies are

Wy = \/q DC + @RF))/m, (2.25)

where the superscripts denote the element of the respective matrices. In the coordinate system used
here, w; is an axial frequency, and wy and wy, are radial frequencies. In the absence of a homogeneous
electric field E, a single ion is located at the ‘center’ of the trap, 7 = 0. The motional frequencies are
unaffected by E.

7 For many ‘standard’ trap designs, such as the ones shown in Figure 2.1 and 2.2, this is a reasonable assumption

11
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The positions and motional frequencies of two trapped ions are also analytically attainable. The
(m)

mean position of both ions 7, is the same as the single-ion case. Under the assumption that the
confinement along the z-axis is the weakest, ions align along this axis, and are placed at [63]

réi) _ r§’") +1 L(_l)i- (2.26)
2 2neod>](32é)

For ions i = 1,2. This solution is also applicable if the masses of the two ions differ, as long as there is
no homogeneous electric field in the radial directions, Ey = E, = 0.

Two ions have a total of 6 motional modes. In each dimension, they can oscillate in phase with each
other, in which case their motion is known as the common mode or center-of-mass mode, or out of phase
with each other, known as the stretch mode. If ion masses are identical, common mode frequencies in
each dimension wy ,m are identical to the previously defined single-ion frequencies, wy. Stretch mode
frequencies are given by [64, 65].

Wy, str = wyzc,com - w,%,com (2‘27)
Wy,str = w;,com - w%,com (2‘28)
Wz,str = \/ng,com' (2.29)

Analytic solutions for common and stretch mode frequencies also exist if the masses of the two ions
are not identical [65]. Three same-mass ions also have analytically obtainable positions and motional
frequencies [64], including that of a third type of mode, Egyptian, in which the central ion moves out
of phase with the outer ions. The analytic solutions of two- and three-ion positions and frequencies
require that off-diagonal terms in ®pc are zero, and that no higher-order potentials [66] are present.
For all other cases, including larger numbers of ions, positions and mode frequencies can only be
obtained through numerical calculation or from analytical approximations [64].

The axial mode structures and frequencies of trapped “°Ca*and 8Sr*ions in various configurations
are shown in Figure 2.3, which reflects the relevant ion constitutions of works presented in this
thesis. The values in the top right of each window is the motional frequency, expressed relative to the
motional mode of a single °Ca™ion, where the same confining potentials are used for all examples.
The values below the arrows, denoted with 7, indicate a dimensionless coupling strength between
an applied light field and the motional mode, through each ion, and is expressed relative to that of a
single “°Ca*ion. The significance and interpretation of this value is discussed in Section 2.2.6, where it
is referred to as the Lamb-Dicke parameter, after having introduced light-atom interaction. For now, it
can be loosely interpreted as the relative amplitude of each ion in a particular oscillator mode.

Ca Sr Ca-Ca Ca-Sr Ca-Sr-Ca
Common @, = 1 0.67 1 0.77 0.83
M, =1 0.88 0.71 0.71 0.49 0.75 0.48 0.69 0.48
1.73 1.53 1.56

Stretch < > < < b >
-0.54 0.54|-0.73 0.25) -0.53 0 0.53
1.72

Egyptian “ e
0.40 -0.33  0.40

Figure 2.3: Various configurations of axial modes of “’Ca™and 88Sr*ion chains. The upper values in each box
are mode frequencies, scaled in reference to that of a single “’Ca™ion. The lower value is the scaled
Lamb-Dicke parameter, 7j,, described in Section 2.2.6

As is described in the following section, ions” motional modes play an important role in quantum
computation, since they enable interaction between qubits. For this purpose, ions should have a low
enough kinetic energy that their motion is considered in terms of quanta of motion, phonons [67]. An
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ion’s motional state is expressed in terms of the occupation number 7 of each mode I, |n); and can be
found in a superposition or mixed state of occupation numbers.

Manipulation of these modes is typically expressed in terms of the creation and annihilation
operators 4] and 4; for each mode [, with the properties

af [n); = Vn+1[n+1), (2:30)
ay|n), = Vn|n—1), (2.31)
afay |n); = n|n), (2:32)

Using these operators, the Hamiltonian that describes the energy of an ions motional mode [ is given
by
1

Hge = heoy(afy + 5) (2:33)

with 7 the reduced Planck constant.

13
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Figure 2.4: Bloch sphere representation of a qubit state

2.2 TRAPPED IONS AS QUBITS
2.2.1  Qubits

Trapped ions serve as the carriers of quantum information, qubits. A qubit is stored in two of an ion’s
electronic states. These states have the requirement that one should have the means to manipulate and
measure their occupation in a controlled way[68]. Correspondingly, the qubit must have lifetimes much
longer than the timescales associated with state control and detection. The internal level structure of
the ionic species used in our experiment are discussed in Section 2.2.7, but for now we assume an ion
with two electronic levels that meets these requirements. We denote these states of the qubit with |0)
and |1), being the ground and excited state, respectively. An arbitrary pure quantum state |{) can
exist in a superposition of these basis states

[) =col0) +c1]1) (2.34)

where ¢y and ¢ are complex numbers that obey |cg|? + |c1|> = 1. We assume that spontaneous decay
from the excited state |1) to the ground state |0) can be neglected. The Hamiltonian of this two-level
system with the basis {|0),|1)} is given by

H, = —T(TZ (2.35)
where fiwy is the energy difference between the states, and ¢, one of the Pauli matrices, which are
given by

(Tx=<0 1), (Ty:<q _i>, 0’Z=<1 0). (2.36)
10 i 0 0 -1

A convenient method of representing a qubit state is by means of the so called Bloch-sphere [11],
depicted in Figure 2.4. Any possible combinations of the complex values ¢y and ¢; (adhering to
the normalization criterion) can be uniquely represented by a vector whose endpoint lies on the
surface of a sphere with radius 1. We take the Bloch-vector pointing to the southern-most point of this
sphere to represent |cg| = 1, and to the northern-most point to be |c;| = 1 8. Any intermediate point
represents a superposition of |0) and |1). Notably, points on the ‘equator’ are an equal superposition,
1/+/2(|0) + €9 [1)). Here, ¢ is a phase difference between the states, which sets the angle along the
equatorial circle on which that state is mapped.

8 Note 7 in Appendix e
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In QC experiments, operations are applied to the qubit to induce controlled changes of the state |¢).

A basic unitary operation acting on the qubit state, U = exp(—ioy6/2), is represented by a rotation of
the Bloch-vector around the axis k € {x,y,z}, by an angle 6. The z-axis is the line that passes through
the north and south pole, and the x and y-axes lie in the equatorial plane.

2.2.2  lon - light interaction

We now discuss the controlled manipulation of a qubit state, which is achieved by coupling the
two-level ion with an electromagnetic light field. We take this field to be a plane wave whose electric
field at a given position, at time ¢, is given by

E(t) = Egcos (wst + ¢f) (237)

with E the field amplitude, wy the frequency, and ¢y the field’s phase.
The two-level system, with a bare-state Hamiltonian H,, is perturbed with an interaction Hamiltonian
Hj, given by

Hj = hQoy cos(wet + ¢r) (2.38)

with Q) the so-called Rabi frequency, whose value is dependent on the coupling strength between the
ion’s dipole moment and the applied field, and is proportional to the field amplitude Ey.

The total system Hamiltonian, H = H, + Hj, can be transformed to an interaction picture with
respect to H,, yielding

Hint = exp (iHyt/h)H exp (—iHat/h)

= ? (cos ((wf —wo)t + <pf) Oy + cos ((wf + wo)t _pr) Oy ...
+ sin ((wf —wo)t + (Pf) oy + sin ((wf + wo)t + ¢f) Uy) ] (2.39)

The rotating wave approximation (RWA) allows us to drop terms that contain fast oscillations, wy + wy.

With the substitution A = wy — wo, where A is the detuning between the light-field and the ion’s
transition frequency, the interaction Hamiltonian becomes

Hint = ? (e_i(At_"’f)mr + ei(At+4’f)U_) (2.40)
where we use the electronic raising and lowering operators o1 = (0y + icy) /2.

Another rotating frame transformation, with U = exp(—iAto;/2) allows us to to express Hint as a
time-independent operator, which can be written in matrix form as

1, [ —=A Qe 'tr
Hiy = =h ) . 2.41
int 2 <Q€Z¢f A ) ( 4 )

2.2.3 Rabi oscillations

The time-dependent dynamics of the quantum state |(¢)) can be calculated using the Schrodinger
equation:

., 0
i 9(6)) = Hine [9(0) (242)
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(a) Resonant Rabi oscillations (b) Detuned Rabi oscillations (c) AC Stark gate
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Figure 2.5: Bloch sphere representation and excitation plots for various light-atom interactions. (a) A light field on
resonance with the atomic transition cyclically transfers population between |0) and |1). Applying
the light field for a time t = 77/Q) is known as a 7-pulse, as depicted by the half rotation in the Bloch
sphere, and the gray dashed line in the excitation plot. (b) Full population transfer is does not occur
when the beam is detuned. (c) Electronic population does not change at very large detuning, but a
phase shift between the states does occur.

Let us consider the case that the light field is on resonance with the atomic transition frequency,
A = 0, and, for notational convenience set the light field phase to ¢y = 0. If the initial state is
|p(0)) = |0), solving Eq. 2.42 results in

Ot .. (Ot
9O =) [0) + ex(6) 1) = cos () 10) ~isin (5 ) 11 (243)
The probability of an ion being in the excited state |1) is given by
. Ot
o - o= (2). ”

This oscillatory behavior is known as a Rabi cycle, with Rabi frequency (). The Rabi frequency is
proportional to the square root of the light field’s intensity, and is additionally dependent on charac-
teristics of the transition being probed (such as magnetic quantum numbers), and the polarization and
orientation of the light field [69].

This type of interaction, resonant Rabi oscillations, is a crucial component of quantum computation,
as it represents one of the basic mechanisms of control of a qubit’s state. Applying a light field on
resonance with an ion’s electronic transition for a time t = 77/(), fully transfers population from the
state |0) to |1), and vice versa. In the Bloch-sphere picture, this operation can be viewed as a rotation
of the Bloch-vector around the x-axis, by an angle 7, shown in Figure 2.5(a). The operation is therefore
known as a 7m-pulse. Applying this field for half of that time, t = 7/(2Q2), allows us to generate
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superposition states, |¢) = %UO) —1i]1)). As one might be able to guess, this operation is referred to

as a 7t/2-pulse. Collectively, operations that rotate the Bloch-vector about a fixed axis are known as

qubit rotations?.
Now let us consider what happens when the applied field is near, but not on, resonance with the

atomic transition, A # 0. The states now evolve as

Q) fff) A (Qefft>
co(t) =cos | —— | +1i sin (2.45)
o(t) ( > O > 45
O QO fft)
c(t) = —i sin | — (2.46)
(1) =~ sin (2 4

with an effective Rabi frequency Qe = V2 + AZ. The population of the excited state is given by

0%, (Ot
Py = QTSH‘Z (;ﬁ) - (2.47)

eff
This population transfer is shown in Figure 2.5(b), again for a pulse duration of t = /2, but with
a detuning of A = —0.6Q). Population transfer still exhibits oscillatory behavior, as in the resonant
case, but Eq. 2.47 shows that the excited state will never be fully populated. Additionally, the effective
cycling frequency is increased when the light-field is detuned from resonance.

In trapped-ion experiments with qubits, one typically finds the frequency at which a light field
is resonant with an ion’s transitions by applying light pulses of fixed duration for varying light
frequencies. The resulting excitation spectrum, shown in Figure 2.6 for t = 7/(), is a simple and
effective tool to help calibrate the laser frequency to be on resonance.

0.5

Excitation

Detuning (A/Q)

Figure 2.6: Rabi excitation spectrum as a function of detuning A, with a pulse duration t = 77/Q)

2.2.4 AC Stark shift

We can consider the case where the detuning is much larger than the on-resonance Rabi frequency,
A < Q. As can be seen from Egs. 2.47, there is hardly any excitation from the ground state, as O/ Q2
tends to zero. However, the energy levels still have a slight energy change with respect to the case
where () = 0. This shift in energy, known as AC Stark shift, results in a relative phase change of the
states |0) and |1) [70].

The change of phase over time, the AC Stark shift frequency, can be calculated by looking at the
shift in eigenvalues, thus energies, of the Hamiltonian in Eq. 2.41, as done in [71]. Another instructive
way to calculate this shift is by monitoring what happens to the states of |0) and |1), when initially
placed in a superposition ¢y = ¢; = 1/+/2 before switching on the detuned beam.

9 Not to be confused with ion crystal rotations in Chapter 5
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In this case, the Schrodinger equation gives us

1 fot> O-A . (Qefft>
co(t) = —=cos [ == +1i sin 2.48
1 Qeget Q+A Qeget
a(t) = 7 cos < > > + i V20 sin ( > . (2.49)

For a small Rabi frequency, Q < A, the populations in each state, |co(t)|> and |c1(#)|?, hardly change.
However, the two states do acquire a non-negligible phase difference with respect to each other: The
phase ¢|gy and ¢y of the states |0) and [1) are given by

¢jy = tan™! (Im(ci)) =tan"! (QiAt n (W)) (2.50)

a:
Re(c;) VAT + Q2 2

with a minus sign for |0) and a plus sign for [1). The accumulated phase difference is ¢ = @1y — P|g)-

Since () is small, we can do a Taylor expansion of ¢ around Q) = 0. The leading term scales with (2,
and is given by

90 ~ 2At — 4sin(At) + sin(2At)
P 472

0? (2.51)

The mean AC Stark shift frequency between the states Aac is the average phase change over time, and
is thus

99(T) —0p(0) _ O

Apc = lim = A (2.52)

T—c0 T
The AC Stark shift is another fundamental tool (though occasionally also a hindrance) in quantum
computation. Applying a light field far enough off-resonance from a transition allows us to change the
phase between qubits, without altering their populations. In the Bloch-sphere picture, this operation
corresponds to a rotation of the Bloch-vector around the z-axis, and is commonly referred to as a
z-gate. In such an operation, a state in an equal superposition traverses the equator of the Bloch-sphere,
as shown in Figure 2.5(c).

2.2.5 Decoherence

All previous descriptions of light-matter interaction have assumed perfect conditions: the laser
frequency and power are perfectly stable, the ion’s two-level transition frequency is constant and it’s
excited state does not spontaneously decay. A theorist might happily make such assumptions, but
an experimentalist may not easily get away with that mentality. Imperfections in an experimental
setup disrupt the intended qubit manipulation, leading to experimental errors. Imperfections can be
categorized into coherent and incoherent sources of error.

Unintentional, but otherwise stable, offsets in experimental parameters lead to coherent errors. Qubit
operations still consistently rotate any Bloch vector from one point to another on the surface of the
Bloch sphere, but the intended mapping might not be achieved. The qubit remains representable as
c0|0) +¢1 |1) as in Eq. 2.34, though the values of ¢y and ¢; may deviate from the intended output.

Experimental parameters may unintentionally change during the execution of a quantum algorithm,
leading to incoherent errors, resulting in qubit decoherence. In the presence of noisy experimental
parameters, if one were to repeatedly initialize a qubit and execute a set of quantum operations, the
final position of qubit’s Bloch vector would be at a different point on the surface of the Bloch sphere
on each run. Executing multiple experimental runs to determine the qubit state effectively averages
out the different Bloch vectors. The resulting Bloch vector does not lie on the surface of the Bloch
sphere, but somewhere within it. Similarly, interaction between the qubit and the environment leads
to dissipative loss of qubit information, also represented by a reduction of the Bloch vector length. In
such cases, the qubit cannot be expressed by the coefficients ¢y and c¢; alone, and is said to be in a
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mixed state. It is instead expressed by a property that captures the mean of output qubit states in the
ensemble of experimental runs, the density operator p. The density operator is defined in terms of the
statistical probability p; to produce the state |<p]-> from an ensemble of possible states, and is given by

o =2.pilop) (9 (2.53)
]

To summarize, and introduce/reiterate some useful terms:

® A qubit state whose Bloch vector lies on the surface of the Bloch sphere is known as a pure state,
which can be expressed as |¢) = cq |0) + ¢1 |1) with |cg|> + |c1]|? = 1, and has a density operator
given by p = |¢) (¢|. More generally, if the system contains more than just one qubit, a pure
quantum state is given by |¢) = Y, ¢; |i), with i the index of the state, which lie in the set of all
possible terms of the tensor product of the individual qubits. As before, the weight-terms are
normalized, }; |c;| = 1. One could describe the Bloch vector as lying on the surface of a Bloch
hypersphere, but maintaining an intuitive picture gets harder in more than three dimensions.

¢ If a qubit state is not pure, and is referred to as a mixed state, and is depicted by an average
Bloch vector that lies within the volume of the Bloch sphere. This state is described by the density
operator p, as in Eq. 2.53.

* The purity of a qubit state is a quantitative description of how close a Bloch vector is to the
surface of a Bloch sphere, given by 7 = tr(p?). A pure state has 7 = 1. A maximally mixed state
(i.e. a Bloch vector of zero length, 0) of a system with d states has a purity of v = 1/4d.

® Coherence is a qualitative property of a qubit that describes how well it can maintain a su-
perposition. Decoherence is the process of coherence loss, and is paired with a reduction in

purity.

¢ The Schrodinger equation (Eq. 2.42) cannot be used to describe the dynamics of a state that
undergoes mixing. Instead, the dynamics of p can be obtained by using the Lindblad master
equation:

d .
= —ilH,p)+ L(p) (2.54)
L(p) is known as the Lindblad decoherence term [72], a Liouvillian operator whose mathematical
description is outside the scope of this thesis. This term describes the dynamics that lead to loss
of purity, including dissipation and decoherence.

2.2.6  Light-atom interaction of a harmonically confined ion

In Section 2.1.4 we have discussed the motional modes of trapped ions, introduced the harmonic
oscillator ladder operators ﬁ;r and 4; of mode [, and introduced the oscillator’s Hamiltonian, H(()ls)C In
this section, we extend the light-atom interaction analysis of the previous section, by additionally
considering the ion’s motion.

The interaction Hamiltonian was previously defined in Eq. 2.38. We can now include the ion’s
motion with respect to the laser field, by adapting our definition of the interaction Hamiltonian to

include the ion’s position:

Hint = 1Qoy cos(Fk + wpt) (2.55)
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where # = /ft/ (2mwy) (4] + 4;) is the ion’s position operator, and k is the projection of the laser field’s

wavevector k onto the unit vector of the axis of ion motion é, (ie. k = k- é;). The position term in the
exponent k? can be written as 1 (4] + 4;) using the substitution

[ h
n==k T (2.56)

The value 7 is known as the Lamb-Dicke parameter. It relates the extent of the ion’s ground state
wavepacket to the wavelength of the light field.
The perturbed Hamiltonian is now adapted to

H) = ?ax [exp (i(q(af +ay)+ wft)> +exp (—1’(17(631+ +ap) + Wff))} (257)

This Hamiltonian’s frame can be changed into an interaction picture, as Hy, = UHU' with the unitary
operator U = exp(—i(H; + Hosc)t/1). The interaction Hamiltonian then reads

7O . ; j .
Hint = 7?& [exp <117(ﬁ16_“‘”t + ﬁfe“"lt))} exp (—iAt) + h.c. (2.58)
where, as in the previous section, we have made the RwWA, and used the substitution A = w ' — wWo. The
interaction Hamiltonian can be further simplified under the assumption that the ion’s wavepacket is
much smaller than the wavelength of the light field, formally defined by the condition 7?(2n + 1) < 1.
This condition is the so-called Lamb-Dicke regime, and allows us to truncate the Taylor expansion,

2
exp (in (@ +af) ) = 1+ in(a +af) — L (a +af 2 (2.59)

We apply this approximation to the interaction Hamiltonian, and expand it into three parts, Hint =
Hear + Hygp, + Hpgp, with

hQ

Hear = —-(1 - 1?n) (04 exp(—iAt) + o exp(iAt)) (2.60)
h

H. = % <A+ﬁ1(0) exp(—i(A +wp)) + -] (0) exp(i(A + wl))) (2.61)

Hosy = "2 (74 a}(0) exp(—i(A — 1)) + &~ 2(0) exp(i(A — wy)) ) (2.62)

where we have used n = 4;4;, and omit terms in H,y, and Hyg, that scale with 7.

We see three distinct cases of resonance A = 0, A = —w;, and A = +w;. In the first case, the
dynamics of the ion’s state are dominated by Her and follow exactly the on-resonance Rabi cycles
described in the previous section. There is no change of motional quanta at this detuning. This type of
oscillation is known as a carrier excitation. The Rabi frequency depends on the mode occupation 7,
and is given by

Qun=0(1- 17211) (2.63)

If A = —wj, the light field is on resonance with a so-called red sideband transition. A transfer from
the ions ground to excited state ¢4 |0) = |1) is paired with a removal of a phonon in mode /, 4;. This
exchange between electronic and motional excitation, with dynamics following from the Hamiltonian
H o (644 + 6—a"), is known as the Jaynes-Cummings model [73]. Noting that 4; [n); = /n|n —1),,
we see from Hyg, that the red sideband transition from |0) |n); <+ |1) [n — 1); occurs with a coupling
strength of

Qup-1 = QU\/E (2.64)
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Similarly, if A = wj, the field is on resonance with a blue sideband, in which case an excitation of
the electronic state is paired with the gain of a phonon'. The transition |0) |n); <> |1) |n 4 1); has
coupling strength

Qn,nJrl =Qyvn+1 (2.65)

The ability to control the motional state of an ion or multiple ions is a fundamental tool in quantum
computation. Firstly, as described in Section 2.2.8, the process of sideband cooling, makes use of sideband
transitions (as the name suggests) to bring ions close to the motional ground state, |0);, where an ion’s
thermal energy does not negatively influence the outcome of qubit operations. Secondly, since the
quantized states of motion are shared among multiple ions in a chain, these motional modes serve as
a data bus to transfer information between ions, or to entangle them.

2.2.7  Qubit operations of Group 1I ions

The previous section introduced how light fields are used to manipulate a two-level system in a
harmonic oscillator. In this section we look at the practical implementation of this type of matter-light
interaction in our experiment. The experiments described in this thesis use °Ca*and 8Sr*ions as
information carriers, or qubits. Both species are group Il ions (alkaline earth metals), and share similar
level structures. In particular, for 40Ca™(8sr™), the meta-stable 3D5 /2(4Ds5/5) level has an optical
quadrupole transition to the 4S;,,(551,,) ground state. The narrow linewidth, long lifetime, and
accessible optical frequency of the transition makes it well-suited for coherent operations, and thus to
be used as a qubit.

The following applies to both *°Ca*and #Sr, so we generalize the discussion for both species
and omit the principle quantum number of the electronic levels. An external magnetic field splits the
S1/2 and Ds /5 levels into 2 and 6 Zeeman sublevels, respectively, denoted by their magnetic quantum
numbers m, with m = +1/2 for Sy, and m = :I:{l /2,3/2,5/2} for Ds /5. The change in frequency of
the individual Zeeman sublevels due an applied magnetic field B is given by

B
Af = %(gj(DS/Z)mD —8i(S1/2)ms) (2.66)

where g is the Bohr magneton, g; the Lande g-factors of the respective levels'’, and mp and
mg their magnetic quantum numbers. Selection rules for quadrupole transitions dictate that only
transitions where the magnetic quantum number changes by |Am| = {0,1,2} are accessible. The
allowed transitions between S, and D5/, are schematically shown in Figure 2.7(a).

In addition to the ion’s internal electronic levels, its external modes of motion collectively represent
ladders of possible states, depicted in Figure 2.7(b). For simplicity, we only consider one of the ion’s
motional modes, allowed since states of different modes ideally do not couple. An ion’s full state is
described by the tensor of its electronic and motional state.

The energy splitting due to an external magnetic field separates the levels such that a light field

can selectively address specific Zeeman sublevel transitions by choosing an appropriate detuning.

Figure 2.7(d) shows an illustrative example of an excitation spectrum similar to that in Figure 2.6, but
now taking into account all possible excitations from the S;,,(m = —1/2) ground state, under the
influence of an applied magnetic field. Next to the various S/, <+ D5/ carrier transitions, we see blue
and red sideband transitions, detuned from the carrier resonance by +wj.

In principle any two of the electronic states in the S;,, and D5/, manifolds can be used to host a
qubit. An optical qubit has an energy difference in an optical frequency, made by choosing one sublevel
from Sq/, and one from Ds,,. Here, a transition where Am = 0 is a logical choice since its frequency

is comparatively less sensitive to magnetic field noise (see Eq. 2.66), making it a more stable qubit.

An alternative choice is to use the two ground state sublevels, S;,,(m = £1/2), as the qubit, known

The omitted terms that scale with 4 in H,y, and Hyg, contain 4;4; and ﬁ;rﬁ;r, known as second order sidebands, where two
phonons are added or removed with one electronic excitation. Less truncation of the Taylor expansion of Eq. 2.59 reveals even
higher order sidebands.

8j(S1/2) = 2.002 [74] and g;(Ds/2)) ~ 1.2 [75, 76].
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Figure 2.7: Overview of qubit transitions of group II ions. (a) Zeeman sublevels and allowed transitions of S;
and Ds/; in group II ions. (b) The motional mode occupation #n of mode I represents a ladder of
possible states. (c) Transitions between Zeeman sublevels of 51/, and D5/, have unique frequencies,
which depend on the strength of the applied magnetic field (d) Theoretical excitation spectrum from
S1/2(m = —1/2) at 3 G, including first-order motional sideband transitions.
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as a ground state qubit, which has a few advantages: The upper of these two levels has an effectively
unlimited lifetime and coherent operations on the transition, if accessed resonantly, are immensely
less sensitive to frequency noise of the field that couples the two states™. The downside is that the
field that couples these states directly cannot be focused narrowly enough to address ions individually.
Instead, the D5/, level can be used as an auxiliary level to couple the ground state qubit optically, for
example using a two-photon Raman transition [77].

The qubit state of each of these levels can be manipulated using the light-matter interaction methods
discussed in the previous section, many of which can be expressed as rotations on the Bloch sphere. In
the following, we give an overview of the most common experimental tools and terminology for qubit
manipulation.

A light-field can be applied to multiple ions simultaneously, referred to as global operations, or
to individual ions by focusing it down narrowly, referred to as addressed operations.

* Coherent population transfer is done with on-resonance Rabi oscillations, denoted by the unitary
operation

R(6,0) = exp(—iboy/2) (2.67)
The pulse duration and power of the light field determines the rotation angle 8 = Q).

* A far-detuned light field produces a change in phase due to the AC Stark shift, which is a
rotation around the z-axis, given by the operation

Z(0) = exp(—ibo/2) (2.68)
where the rotation angle is determined by 6 = %t/ (2A).

¢ Changing the phase of the light field results in a rotation around a different equitorial axis. In
particular, if the light field is shifted by a phase of ¢ = 71/2, we have the operation

R(0,7/2) = exp(—iboy/2). (2.69)
* In general, a light-field with phase ¢y is given by the rotation operation

R(6,¢) = exp (—if(ox cos ¢ + 0y, sinp) /2) . (2.70)
e The operation R(6,¢) can be realized with the concatenated operation Z(—¢)R(6,0)Z(¢$). A

laser phase-change is less error-prone than using AC Stark shifts.

¢ The phonon occupation of an ion (or multiple ions’) motional modes can be manipulated through
qubit rotations with the light field on resonance with red or blue sideband transitions.

® The shared motional modes are used for entanglement between ions. Several methods exist
to achieve entanglement [67, 78]. The method most commonly used for optical qubits is the
Mplmer-Serensen (MS) gate [79], whose experimental implementation is described in Section
2.3.6. An MS gate’s operation on two ions is given by:

MS(0) = exp(—i@(a,gl) + J)({z)>2) (2.71)
(i)

with Pauli operators o’ acting on ions i =1, 2.

The set of operations in this list is sufficient to form a universal set of gates for quantum computation
[80].

12 Compare how steady an archer needs to hold a bow to hit a target 1 meter away against how steady he’d have to hold it if the
same target was tens of thousands of kilometers away
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2.2.8 Experimental sequences

The light-atom interaction presented in the previous section provides a foundational framework
of trapped-ion quantum computation. A set of such operations form the core of an experimental
sequence, and are used as elements of a quantum circuit. In addition to executing a quantum circuit,
an experimental sequence is preceded with steps of state preparation, and finalized with state readout.
This section gives an overview of the components that make up a typical experimental sequence.
The details of some of these steps are specific to which ionic species is used as a qubit. We limit
the discussion to the ions used in this thesis, *°Ca*and 88Sr™. Generic level schemes, valid for both
species, are shown in Figure 2.8(a), illustrating relevant transitions for various sequence steps.

(a) Doppler cooling Optical pumping Sideband cooling
Refreeze

n—1)

State detectio;) P3/2 P3/2 D |n>
1/2 w]
_Ds2 fﬂ[) 5 n—1)
=—m=-3/2 / 5/
D3/2 m=—3/2
—Si2 n)
1 m=-1/2
Si/2 — m— i1?2 S1/2 In—1)

(b) iREfreeze (4 ms) ;Opticalpumping(O.S ms) ;Qubit operations
Doppler cooling (5 ms) Sideband cooling (4 ms) State detection (5ms)
Figure 2.8: (a) Experimental operations on group II ions, and (b) typical sequence for trapped ion quantum

computation measurements. Times vary for different experiments, but the values indicate typical
orders of magnitude.

-Doppler cooling-

The fidelity of quantum operations is dependent on having a well-defined motional state. Prior to
executing a quantum circuit, ions are to be initialized as close to the motional ground state as possible.
Whether due to collisions with the background gas, or motional excitation due to the relatively
high-power beam used in state detection (described later in this section), one cannot assume that an
ion is near the motional ground state at the start of an experimental sequence. Doppler cooling is a
first step in reducing the ions’ energy.

Doppler cooling is done by applying a light-field to the ions, red-detuned from a short-lived
electronic transition. By now, Doppler cooling is well-enough documented [81, 82] and so common-
place in trapped atom and ion experiments, that it doesn’t require a full treatment here. It is, however,
worth noting that beam parameters, beam power and detuning from resonance, are generally chosen in
such a way to minimize the final energy of the ions. This limit can be reached by choosing a detuning
of § = —I'/2 and a beam power (expressed in terms of the coupling strength, a.k.a. Rabi frequency
— see previous section) (3 < I', where I' is the spontaneous decay rate of the probed transition™ .
Under these conditions, the ions energy can reach a mean phonon number of 7 ~ I'/(2w;), in each
mode with frequency wj. For typical mode frequencies (~ 1 MHz), this limit, the Doppler limit, is
approximately ten phonons.

The Doppler cooling settings for reaching the Doppler limit (6 = —I'/2, (3 < I') are not well-suited
for efficiently cooling ions with energies orders of magnitude above the cooling limit, which can occur,
for example, when a particle in the background gas collides with an ion. More efficient cooling is
achieved by including a high power (2 > I'), far-detuned (A > I') Doppler cooling beam. This cooling

13 T = 27t 22.4MHz for *0Ca™ (4S; , < 4P; /) and 27t 20.4 MHz for #8Sr™ (55, /5 <+ 5Py 5)
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process, referred to as refreezing, spans multiple orders of magnitude of ion energy. The term ‘refreeze’
alludes to the phase transition that ions undergo while cooling, discussed in detail in Chapter 4.

The group II ions, undergoing Doppler cooling, suffer from occasional decay into the meta-stable
D3/, level, where the cooling process is halted. To avoid population remaining trapped in this level, a
‘repump’ beam is on during Doppler cooling, returning the electronic state to the cooling cycle.

-Optical pumping-

Two of an ion’s electronic sublevels are used to encode a qubit. At the start of a computation
algorithm, the qubit is to be initialized in a particular state, which in our experiments is usually
S1/2(m = —1/2) = |0). After Doppler cooling, the ion may be in either the m = +1/2 or m = —1/2
state. The transfer from this state towards a population of 100% in m = —1/2 is achieved by a process
known as optical pumping [83].

There are two common methods of optical pumping. One involves using circularly polarized light
on the Doppler cooling transition, where the light’s polarization is tuned to favor Am = —1 in
the S1/p — P;/, transition: negative-circularly polarized light carries negative angular momentum,
which must be conserved when an ion absorbs a photon. The Sy /,(m = +1/2) sublevel takes part in
this transition, whereas population transfer from Sy ,,(m = —1/2) is suppressed (since there is no
Py jo(m = —3/2)). Since decay to the Sy ,,(m = —1/2) level still occurs, population ends up trapped in
that state. While this method is relatively quick (on the order of the spontaneous decay rate from P, /,
to 51/, approximately 20 MHz), the probability to end up in the desired state is sensitive to the beam'’s
polarization. A high-quality optical setup is required to maximize this probability. In our experiment,
we elect to use another method, which is comparatively slower but has a higher state initialization
fidelity.

The second method of optical pumping is, in contrast to the polarization selective method, frequency
selective. The ions state is transferred by resonantly exciting the Sy ,5(m = +1/2) <> D5/p(m = —3/2)
quadrupole transition and the Ds,, <+ P;/; transition simultaneously. Spontaneous decay transfers
the state from P/, back to Sy /5. This cycle continues, until the decay occurs to the sublevel Sy /,(m =
—1/2). While this method is conceptually similar to the previous one, the distinction is that the
relatively narrow linewidth of the S <+ D transition (~ 1 Hz) allows for a significantly higher resolved
state transfer between the different sublevels. This comes at the cost that the S <+ D transition typically
has a considerably lower Rabi frequency, making this process slower. In our experiment, typical optical
pumping times are 400 ps, after which we reach > 99.9% population in the Sy ,(m = —1/2) state.

-Sideband cooling-

Doppler cooling is limited to reducing an ion’s energy to 7 — 10 quanta in each motional mode.
Further reduction to the motional ground state is achieved with ground-state cooling. There exist
multiple techniques to achieve near-ground-state cooling, such as EIT cooling [84] and polarization-
gradient cooling [85]. However, by far the most commonly utilized technique is sideband cooling4.

Sideband cooling is conceptually similar to optical pumping, in the sense that decay due to
spontaneous emission provides a dissipative transfer of population. In the case of sideband cooling,
this dissipation process involves reducing the phonon occupation number of motional modes. A pulse
is applied to the Sy p(m = —1/2) <+ Ds/p(m = —5/2) transition, though the beam is detuned by
A = —wj, where wj is the frequency of the mode that is to be cooled. In this red sideband interaction,
described by Eq. 2.62, a phonon is removed whenever population is transferred from the S-level to the
D-level. Simultaneously, a beam couples the D5/, <+ P5/, transition, the latter of which undergoes fast
spontaneous decay back to the Sy, level. This transfer to a fast-decaying level is known as quenching.
After the spontaneous decay, the process is repeated, and a phonon is removed with each cycle. The
cycle continues until the mode occupation is zero, at which point a red sideband transition is no longer
possible. The photon recoil of the last quenching and spontaneous decay processes poses a limit to the
minimum attainable mean phonon number.

Sideband cooling is relatively time-consuming, taking up a considerable portion of an experimental
sequence, possibly exceeding 10 ms if multiple motional modes require cooling. The frequencies and
powers of the beams involved in sideband cooling should be tuned to optimize the cooling rate.

If one has the hardware in place for running QC algorithms, sideband cooling is doable by default. The same cannot be said for
EIT and PG cooling, which require additional advanced setups.

25



26

15

TRAPPED IONS FOR QUANTUM COMPUTATION

Other than simply to reduce experimental time, optimizing the sideband cooling rate is important
for minimizing the phonon number at the end of a cooling sequence, which finds an equilibrium
value determined by the cooling rate and the heating rate (see Section 2.3.4). In practice, the beam
coupling the Sy, <+ D5/, sideband transition is set to be as strong as possible (limited by the amount
of laser power experimental hardware can provide), while the D <+ P “quenching” transition coupling
strength is set relatively low with respect to the experimentally available power, since a lower coupling
strength minimizes lowest attainable mean phonon number [69]. On the other hand, too low beam
power results in a low cooling rate, and thus a higher final mean phonon number, as it competes with
the trap’s heating rate.

Though relatively unlikely, decay may occur from the P;,, to the D3/, level. While population
trapped in D3/, can also be repumped, followed by decay to Sy ,;, this process may result with state
population in the S; /,(m = +1/2) sublevel, which terminates the cooling cycle. Sideband cooling is
therefore interleaved with optical pumping pulses to reintroduce the state into the cooling cycle, if
necessary. A final optical pumping pulse follows the sideband cooling step. Depending on cooling
requirements, multiple modes may need to be cooled. In this case, each mode is cooled sequentially.

-Qubit operation-

The heart of an experimental sequence, and the most versatile and thus difficult to generalize, is the
set of pulses that produce the desired qubit operations, for example implementing the set of gates of a
QC circuit [86]. Generally, this part of the sequence entails the set of operations discussed in Section
2.2.7, but can include other operations, such as waiting times, or manipulation of an ion’s position
through changes in electrode voltages.

This step in the experimental sequence is specific to the experiment being carried out. Detailed
descriptions are therefore deferred to the Chapters that describe the specific experiments, Chapters 4
through 6.

-State detection-

At the end of a sequence, the state of the ion(s) is determined using fluorescence detection [55].
The same set of beams used for Doppler cooling are used for state detection. If the qubit was in the
S1/2 = |0) state, the ion will fluoresce since this state is part of the Doppler cooling cycle. If it was in
the D5/, = |1) state'5, the electronic level is not part of the cooling cycle and the ion is ‘dark’.

A photomultiplier tube (PMT) or a CCD camera is used to detect emitted fluorescence photons. If
during the detection time the photon counts exceed a predetermined threshold, the ion is determined
to have been in 51,,, and otherwise in Ds/,. State detection through a CCD camera allows one to
distinguish the state of individual spatially separated ions, whereas a PMT only detects the total number
of bright and dark ions. Historically, the use of PMTs is based on their superior detection efficiency, high
signal-to-noise ratio, and a relatively simple integration into experimental control software. With recent
developments on each of these fronts for CCD cameras, using them for state detection is becoming more
favorable. Our experimental setup has, as of yet, not implemented improved CCD camera detection.
Therefore, most presented data makes use of PMT-based state detection, where the exceptions are cases
that resolution of multiple-ion states is necessary.

2.3 SURFACE TRAPS: POTENTIALS AND CHARACTERIZATION

In Section 2.1, the foundation of ion traps and their trapping potentials was introduced. Scalable
trapping architectures, to be used in the context of quantum computation, are envisioned to take
on a QCCD design: a segmented surface trap. In contrast to the traditional 3D blade trap, producing
a confining potential like in Eq. 2.17 is not trivial on a 2D segmented trap. For example, since trap
electrodes are not placed symmetrically around the trap center, one cannot simply apply a high
voltage on two opposing ends of the trap to create a harmonic confining potential, without introducing
additional unwanted fields. On the other hand, the number of degrees of freedom in control over
trapping potentials is comparable to the number of electrodes. The larger number of electrodes of a
segmented trap provides more control over the trapping potentials compared with a 3D blade trap.

If the qubit is encoded in the Zeeman sublevels of S;/,, (i.e., a ground-state qubit), an additional analysis pulse is used to first
transfer one of the two states to a sublevel in Ds,,
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Section 2.3.1 gives an overview of how we generate and control trapping potentials using voltages
on a surface trap’s electrodes. Once trapped, ions can be used as sensors to characterize properties of
the experimental setup such as trap potentials, surface noise from the trap electrodes, magnetic field
stability, and laser frequency stability. Such characterization makes use of the laser-ion interaction
toolbox discussed in Section 2.2. Section 2.3.2 describes how potentials are calibrated in order to
characterize the discrepancy between simulated and experimentally realized potentials. Section 2.3.4
discusses how an unintended gain in energy in the ion’s motion, a notorious issue for ions in surface
traps, is characterized. A method of determining how well quantum coherence in a qubit is maintained
is discussed in Section 2.3.5. Finally, the ability to entangle qubits through a common entangling gate,
the Melmer-Serensen (MS) gate, and characterization of the gate performance is discussed in Section
2.3.6.

2.3.1 Trapping potentials - Spherical harmonics expansion

Voltages on the trap’s electrodes produce an electric field potential. One aims to apply voltages to the
electrodes to place ions at a specific position within the trap, with a specific motional frequency. It is
impractical to control these parameters by tweaking individual voltages, since this will likely incur
undesired stray fields, leading to excess micromotion. Instead, we determine how a set of voltages
applied to the electrodes produces a given potential. Multiple of such potentials form a basis from
which a linear combination generates a total trap potential, which uniquely governs ion positions and
motional frequencies.

For this basis of potentials, we chose spherical harmonic potentials [87]. We see later that this basis
contains terms that are natural and intuitive for ion trapping. The terms in this basis are denoted by the
spherical harmonic functions Y; ,,, characterized by a degree [ and an order n. They are a function of
position and can be analytically expressed in Cartesian coordinates. The terms make up an orthogonal
set of solutions of the condition V2Y; , = 0. Any potential in a charge-free volume can be expressed
up to a chosen degree as a linear combination of these terms, known as a multipole expansion. The
Y; , terms are referred to as multipoles. Terms up to and including [ = 2 are sufficient to precisely
describe any quadratic potential.

The terms up to second degree'® are given by
Yoo =1
Y1101} = {y,z,x}

Yo o =uxy

Y, 1 =yz
Yoo = 22% — x% — i
Y1 =xz
Yoo = X% — y2 (2.72)

Referring back to Eq. 2.17, we can see why this basis is considered intuitive for ion trapping. The term
Y, o is the same as the axial confining potential brought on by the end-caps, Vpc. Y2 corresponds to
the radial bias introduced by applying a voltage to opposing blades, V},. The Y (1 1} terms represent
homogeneous electric fields, typically used to compensate undesired stray fields that may be present
around the trapping region. We will see in Chapter 5 that Y ; plays a crucial role in manipulating the
angular orientation of an ion chain.

The goal is to derive a set of electrode voltages that produces the potential corresponding to each
individual multipole. The method of deriving these voltages is as follows (adapted from App. B. in
Ref. [88]).

A model of our trap’s electrode layout, including the gaps between the electrodes, and the slot in the
center of our trap (see Section 3.2 for a description of surface trap layouts) is analyzed in the simulation

Often these terms are displayed with a normalization constant before them. We omit them because they are unnecessary for the
purpose of generating ion trap potentials. In fact, it’s easier to make an intuitive link to field potentials, which directly relates to
motional frequencies and ion positions, without these scaling factors.
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software Comsol. Comsol uses finite-element methods to calculate electrostatic potentials for a set
of boundary conditions, such as voltages on electrodes. We calculate the potential ®; ;(x;, y;, z;) that
results from applying 1V to electrode k, at discrete points {x;,y;,z;} indexed i, centered around the
trapping region. All other electrodes are set to 0 V. The range of this grid of points is chosen such
that higher-than-second order gradient terms are negligible, but large enough that the curvature
(second-order gradient) is not underdetermined. We choose a range that is approximately 20% of the
electrode-ion separation of our trap, 20 um?. The potential is analyzed in a uniform grid within this
range, with 21 grid points in each dimension, giving n; = 9261 data points per electrode k, cast into
the vector CTDk.

The potential produced by an electrode is to be expanded into the basis of spherical harmonics. This
is done by first analytically calculating the values of Y; ,(x;,y;,z;) for all grid points, for the n, =9
terms of Y up to second degree, I < 2. For notational convenience, all 9 possible combinations of !
and 7 are denoted with a single index m. The center of the grid volume coincides with the desired
trapping location, with x =y =z = 0.

The potential at each grid point can be expressed as a linear combination of spherical harmonic
terms, Y, Y (%, v, zl-)wy(rlf) = Py (x;,y;,2;i), where wﬁ,]f) is a set of weights, cast into @),

To solve for wgf ), it is helpful to cast the values Y}, at each grid point i into a n; X n,, matrix Y. The
equation to be solved is

Yot = &, (273)

in which the least-squares solution can be obtained by using the singular-value decomposed pseu-
doinverse [89], Y~!, a matrix-inversion technique for solving over-determined linear equations with a
least-squares regression. The weights are given by

ok = Y1, (2.74)

The coefficients in @) describe the potential of electrode k, expressed in the basis of spherical
harmonic potentials. Combining all @*) into the 1, x 1y matrix w, we now need to determine what
linear combination of voltages V,; can produce each individual spherical harmonic potential. In matrix
form, this is represented by the equation

wV =1 (2.75)

where V is the 1y x 1, matrix containing V,, for all m. Once again, a pseudoinverse is used to find the
least-squares solution, given by

V=wl (2.76)

In calculating voltage solutions for spherical harmonic potentials, some harmonic terms can be
omitted. This removes constraints on the remaining solutions, allowing solutions to be found at
lower voltages, which may be useful for setups with limited voltage supply range. It is particularly
useful to remove entries corresponding to Yy o, since this potential does not produce any electric field
(E = —VYyp = 0) and so does not affect an ion’s position. Other rows can be omitted, for example,
when the number of electrodes is low: as a rule-of-thumb, each electrode adds a degree of freedom to
producing a unique potential. Therefore, if one wants to uniquely control 8 multipole potentials, at
least 8 electrodes are required. For reasonable trap operation, at least the multipoles Y7 _1, and Y7 1,
used for nudging the ions towards the RF-null, and Y5y, the primary DC trapping potential, should be
included.

The significance of V is that it describes which set of voltages are required for each spherical
harmonic potential. This means there is an independent set of voltages that controls the magnitude of
each potential. We will describe later that a chosen position and set of motional frequencies can be
uniquely described by a combination of spherical harmonic potentials. We will thus have a mapping
between desired positions and frequencies, and electrode voltages.
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2.3.2 Potential calibration

The solution for the required electrode voltages for a given static trapping potential may not produce
the actual expected potentials, due to simulation imprecision, uncontrolled electric charges on the trap
surface, and manufacturing tolerances. These discrepancies may lead to unexpected mode frequencies
and ion positions. Deviations from intended mode frequencies are typically easily dealt with since
they are straightforward to measure and correct. Deviations in an ion’s intended position are caused
by incorrect settings of the Y; (_; o1y terms, often caused by the presence of stray fields that have
not been accounted for. Crucially, offsets in Y7, _; and Y; ; force ions away from the RF-null, where
they experience a higher micromotion amplitude, known as excess micromotion. There exist several
commonly used methods of minimizing excess micromotion, as is discussed in Section 2.3.3.

For some applications, a higher degree of understanding and control of actual trap potentials is
required. Notably, Chapter 5 discusses methods for physically manipulating ion positions through
control of trap potentials, where it is clear that successful ion transport requires precisely tailored
sequences of potentials. For such operations, the discrepancy between desired and actual potentials
needs to be estimated. This section covers a measurement protocol to calibrate this discrepancy.

A list of voltages V is generated for a chosen list of multipoles, #iset, using Vifiger = V, with
the multipole matrix V found using Eq. 2.76, discussed in the previous section. st contains the
8 multipole terms corresponding to Y;, for [ = 1,2. Applying these voltages to the trap electrodes
produces a potential that can be expressed in terms of multipole contributions, denoted by 7, which
might deviate from 17ist. We model this possible discrepancy as

i = Affiset + D. (2.77)

A is an 8 x 8 correlation matrix between set and actual multipoles, and the vector b is a constant offset.

A method to estimate A and b is outlined below.

The applied RF power and the eight terms of the vector /7 uniquely define a potential with ellipsoidal
equipotential surfaces. Such an ellipsoid can be characterized by nine parameters: the displacement of
the center of the ellipsoid in three Cartesian directions, three tilt angles of the ellipsoid’s principal
axes with respect to the Cartesian axes, and three lengths of the principal axes of the ellipsoid. These
parameters translate into measurable quantities of a single trapped ion. The calibration terms A and b
can therefore be found by experimentally estimating the actual trapping potential for various multipole
settings f7iset, and comparing experimental results to calculated expected potentials. We will now
describe how each of the potential parameters are experimentally determined.

The lengths of the principal axes of an equipotential ellipsoid define the curvature of the potential in
three orthogonal directions ay, , .1, and are thus determined by the motional frequencies of the ion, as

wy = \/axq/m, with g and m the charge and mass of the ion. Sideband spectroscopy (see Section 2.2.7)
(7) ()
k

st indexed

is used to determine the ion’s motional frequencies w
by j.
The tilt of the principal axes can be determined by measuring the relative coupling strengths of a

for various multipole settings 7

beam with wavevector k on resonance with the motional sidebands of an ion’s electronic transition.

As shown in Section 2.2.6, the Lamb-Dicke parameter, and therefore the coupling strength () of
mode k, depends on the angle of incidence of the beam with respect to orientation of the motional
mode, O « k- . Here ¢, are the to-be-determined unit vectors of the potential’s principal axes

ke {x',y’,2z'}, accented to denote that they are not necessarily the Cartesian axes of the lab system.

The coupling strength also depends on the motional mode frequency, () & w~'/2. One can find the
coupling strengths by measuring the effective Rabi frequency when exciting the blue sideband for each
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motional mode of an ion prepared in the motional and electronic ground state. The tilt of the principal
axes can be estimated by determining their unit vectors by solving the following set of equations:

& % & =¢, (2.78)
Q, k-2, [wy
S _K Wy (2.79)
Qy k- éy Wy 79
0, k-¢é
v Wz (2.80)
Q: k.ol wy

Using this method assumes that the wavevector k is known. If there is uncertainty in the wavevector,
one can also compare the sideband coupling strengths to that of a carrier excitation ()car, which gives
the following additional equation

Qk oo /
= k . . .
o e &y (2.81)

()

é]’{ is dependent on the configuration of multipoles, fise¢. Similar to the measurements of wy’, we

() ()

measure values of ék] " for various multipole configurations, g,
distinct configuration.

Finally, a displacement of the ellipsoid, caused by a uniform field, results in an identical displacement
of an ion, 7, since the center of the ellipsoid represents the potential minimum. Therefore, one can
measure the position of the ion to characterize this component of the potential. In our experiment, a
CCD camera monitors the position of a single ion with respect to the trap plane. We thus determine
the displacement in the xz-plane, denoted by r,(c] ) and rgj ), for various multipole settings ﬁléje)t by
monitoring the position of an ion on the CCD image. The magnification is calibrated by using imaged
trap electrodes as a scale reference. Alternatively, one can calculate the separation d of two trapped
ions for a measured common mode frequency w, with = qz/ (2megmw?), with €y the vacuum
permittivity, and compare this to the separation on the CCD.

The displacement r,, is perpendicular to the image plane, and is therefore not readily detected by
the CCD. An ion displaced in this direction experiences excess micromotion, as discussed in Section
2.3.3. The amplitude of this motion depends linearly on the displacement of the ion from the RF
pseudopotential minimum. We can therefore infer ion displacement by measuring the micromotion
amplitude. This amplitude is measured with micromotion sideband spectroscopy [90], in which we
determine the ratio between the coupling strength of a micromotion sideband Qypy, and that of a
carrier transition Qc,r. The micromotion amplitude, denoted by the micromotion modulation index S,
is given by /2 ~ Onvm/ Qcar- The modulation index f is related to ion displacement as ry, = 28/kqy
[91]. Here, k is the wavenumber of a beam propagating perpendicular to the trap surface, and gy, is the
trap’s stability parameter (see Eq. 2.5).

For any given multipole configuration 17;, positions (")) can be calculated using equation 2.22,

where the index j refers to each

and frequencies @ (7)) and tilts & (i721/)) are given by the eigenvalues and eigenvectors of equation
2.23. Calculated values of these parameters for various intended multipoles 77i; are compared with
measured values, giving a cost function given by:

. . 2 .
~ — A / x — ~ —
Y | (@ — @) + & = &| + () - m(imy))? (2.82)
k,j
where the sum is taken over all measurements j, with measurement results in each of three axes k. We
numerically minimize the cost function of Eq. 2.82. The correlation matrix A and offset b are used as
optimization parameters, noting that the values of 77; are dependent on these parameters, as given by
Eq. 2.77. We thus find optimized values for A and b.
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2.3.3 Micromotion compensation

The equations of motion of an RF trap, presented in Section 2.1.1, lead to solutions that include motion
at two distinct timescales, secular motion and micromotion. The solution of Eq. 2.6 suggests that the
amplitude ratio between secular motion and micromotion is g /2, with g the Mathieu g-parameter.
Eq. 2.6, however, is derived with the assumption that the DC potential Vpc has no linear component
around the trap center 7 = 0, such that VVpc|7—o = 0. In reality, charges on electrodes or miscalibrated
electrode potentials can lead to undesired stray fields. These fields force an ion away from the trap
center. If ions are radially further away from the trap center, they are subjected to a larger RF force
(which grows quadratically with distance away from the RF-null). The ion is then said to experience
excess micromotion.

While some excess micromotion may be tolerated, it has several adverse effects. For example, it
reduces the nominal coupling strength between a light field and a carrier, it presents a fundamental
limit to the lowest attainable phonon number with sideband cooling [90], and it may induce stronger
coupling between motional modes [66], particularly in anharmonic trapping potentials. It is therefore
a requirement for QC to compensate stray fields in order to minimize micromotion. There are multiple
experimental techniques to minimize micromotion [91]. Two of these techniques have already been
alluded to in the section on potential calibration, Section 2.3.2. There, we have introduced the vector E,
which describes the stray fields around the trapping region when all electrode voltages are zero. In
particular, the first three terms of b correspond to homogeneous electric fields, of which the x and y
directions, the first and third entry of E, require compensation. The values of st must be chosen in
such a way that these entries in 77 become zero.

In practice, stray fields change on a day-to-day basis. Daily recalibration of all terms in A and
b is time-consuming, so a more direct method of micromotion compensation is desired, described
below. The following methods are ones that are commonly used in our experiment, though is not an
exhaustive list of micromotion compensation techniques. More methods can be found in Ref. [91].

-Camera detection-
The potential in one radial dimension (r € {x,y}) is given by

Vo = 5 (re + o) + (B + By)r (283)

with the RF pseudopotential curvature ¢rp, the DC curvature ¢pc, and a DC electric field E, that may
be due to stray charges or potential miscalibration, and E; an intentionally applied field to correct for
it.

The ion’s equilibrium position, found by solving 6V, /dr = 0, is given by

1o = __E+E (2.84)
¢rF + ¢DC

Micromotion is compensated when the ion is at the RF-null, ry = 0, valid when E; = —E,. Compensa-
tion through camera detection involves adjusting the RF power, thus changing the pseudopotential
curvature ¢rp, while monitoring the ion’s position by fluorescence detection with a CCD camera. If the
ion is at the RF null, its position does not change. Otherwise, if E;, # —E, a change in RF power will
result in a change in ion position. Ej is adjusted until the ion no longer visibly moves. This method is
only applicable for compensation in the directions that are accessible in the image plane.

-Micromotion sideband-

It was shown in Section 2.2.6 that an ion’s secular oscillatory motion produces motional sidebands in
the laser excitation spectrum. A similar argument can be made for micromotion: excess micromotion
produces sidebands, whose coupling strength () to the light field depends on the amplitude of
the motion. Simultaneously, the light field’s carrier coupling strength ()c,r decreases when excess
micromotion is present. Both coupling strengths are readily obtained by measuring Rabi oscillations
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(see Section 2.2.7) on the carrier and micromotion sideband. The ratio of coupling strengths is given by

Ovm _ J1(B)
Qcar ]O(ﬁ)

with J,(B) the Bessel function of the first kind, with order n. The modulation index f relates the ion’s
micromotion oscillation amplitude 7y to the wavelength of the laser, as

(2.85)

B =rwm -k (2.86)
with k the light field’s wavevector. The micromotion amplitude is related to the ion’s displacement 7
by
1 0 0
MM~ [0 —1 0 ?g (2.87)
0 0 O

with g the Mathieu g-parameter.
For B <« 1, the coupling strength ratio is approximated by

Ovm B
~ = 2.88
O~ 2 (2.88)

Micromotion is thus minimized by measuring and minimizing the ratio of coupling strengths Oy
and Qcar when varying the compensation fields Ej,. This minimizes an ion’s micromotion amplitude
projected in the direction along the light field’s wavevector. For compensation along both radial
dimensions, at least two beams, each at a different angle in the radial plane, are required.

-Photon correlation-

A third method of micromotion compensation is through the photon correlation technique. The
technique relies on the fact that the absorption and subsequent spontaneous emission rate of an ion
undergoing Doppler cooling is dependent on the ion’s velocity. An ion’s velocity, in turn, is driven by
the trap’s RF field, and is dependent on how far the ion is from the RF null. Excess micromotion can
be detected by temporally correlating the the phase of the RF field and the ion’s emission rate. This
process is illustrated in Figure 2.9, and described below.

An ion’s velocity is correlated with the phase of the RF field that drives it, as shown in the two-
dimensional histograms in the upper panels of Figure 2.9, where lighter colors represent a higher
likelihood for that combination of RF phase and ion velocity to occur. The plots are generated by
simulating the motion of an ion in an RF trap (the simulations are discussed in detail in Section 4.4).

Velocity-phase correlation plots are shown for the case where there is no radial field (left), and
where there is a 10 Vmm ™! field (right), under otherwise typical trapping conditions. The interaction
of the ion with the Doppler cooling beam is velocity dependent, as displayed in the plot on the right,
calculated using typical Doppler cooling parameters'”.

Since the ion’s velocity depends on the RF drive phase, it is evident that the fluorescence rate is
likewise dependent on that phase'®. Combining the information from the upper plots in Figure 2.9,
we display the Doppler cooling fluorescence as function of RF phase, where its phase dependence
—or lack thereof— indicates how well micromotion is compensated.

In our setup, a portion of the trap’s RF drive signal is sent to a signal counter. Simultaneously,
photomultiplier tube (PMT)-pulses from the detection of an ion’s fluorescence are sent to another port
of the counter. The time delay between each RF drive signal and subsequent PMT counts are recorded,
and displayed as a histogram. A flat histogram indicates that micromotion is compensated. As with the

17 I['/(2m) = 22MHz,6 = —T'/2,Q < T, see Section 2.2.8
18 The natural decay time of the P, — 51/ is ~ 8ns. Comparing that to the oscillation period of the RF drive, ~ 25ns, we note
that photon detection times are not perfectly correlated with the RF phase, but enough to be able to measure a correlation signal.
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previous methods, the photon correlation technique is only sensitive to micromotion in the direction
of the wavevector of the Doppler cooling beam.
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Figure 2.9: Photon correlation for micromotion compensation: the upper plots are histograms of simulated
Doppler cooled ion velocities, and the phase of the RF trap drive, shown for no stray field (left) and
10 Vmm~! stray field (right). Light colors indicate a high occurrence. The lower plots show expected
fluorescence as function of RF trap drive phase, noting that a higher fluorescence count is expected
when an ion’s velocity is negative (as shown in the right plot). Micromotion is compensated by
flattening the correlation curve between trap drive phase and measured fluorescence.

In our experiment, we use a combination of techniques discussed above to detect and correct for
micromotion. The micromotion sideband method for micromotion compensation is the most accurate
of the three and provides a quantitative description of the amount of micromotion in terms of the
modulation index B. However, the advantage of the photon correlation technique over the previous
methods is that it non-invasively runs in the background, and does not require any calibration of
micromotion sideband frequency or beam power. The necessary signals for photon correlation, PMT
counts and the trap drive RF are continuously picked off without affecting the experiment. The
photon-correlation technique is more sensitive when the Doppler cooling beam has low power (() < T')
and thus is less precise when high power is applied, for example during state detection.

2.3.4 Heating rates

The functionality of entangling operations relies on the ions’ shared motional modes. High-fidelity
quantum computation with trapped ions therefore requires that the motional state of an ion is well-
controlled. In practice, this means that an ion’s motional modes should be cooled to the ground state
prior to any logical operations. While common entangling operations are designed to be resilient
to imperfect ground state cooling [79], undesired changes in the motional state during a sequence,
motional heating, disrupts the gate operation.

The predominant source of ion heating is usually electric field noise generated by surfaces near
the ion, the trap electrodes [29, 32, 92—94]. Heating rates are especially a nuisance in surface ion traps,
as the distance between the ion and the nearest electrode is typically an order of magnitude smaller
than conventional macroscopic traps. Since motional heating presents a major source of error in QC
sequences, it is useful to characterize a trap’s heating rates. Two common methods [29] used are Rabi
decay measurements and sideband thermometry'?. The general sequence for both measurements is
similar: ground state cool an ion, wait a fixed duration, and then perform Rabi cycles on either a
carrier Sy /p <+ D5/, transition, or on its sidebands. The ion’s mode occupation can be inferred from
measurements of the state population as a function of Rabi cycle time. The measurement is repeated

A third type of heating rate measurement is the Doppler recooling [95] technique, reserved for particularly high heating rates. If
one needs to resort to using this kind of measurement on a trap intended for quantum computation, one would do well to
consider replacing the trap altogether.
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for various wait-times between cooling and probing the ion. The change in mean mode occupation 7
over time is the heating rate 7.

-Carrier excitation-

It was shown in Section 2.2.6 that the Rabi frequency of a resonant carrier transition is, to second
order, given by O, , = Q(1 — 7%n), with Q the bare (n = 0) Rabi frequency, and 7 the Lamb-Dicke
parameter. An ion whose motional state is in a thermal distribution®* with mean phonon number 7
has a phonon occupation probability given by

Py (1) = %H (ﬁi1>n (2.89)

for phonon number #.

An ion with a phonon distribution P, (71) will exhibit Rabi oscillations with multiple frequency
components, following Eq. 2.44. The excited state population develops as

> . Qn T’lt
Py = ) Pu(7) sin’ <2> (2.90)
n=0

The distribution of Rabi frequencies for 7 > 0 leads to a dephasing of the Rabi oscillations over time,
which is seen as a decay in the excitation cycles of Pj;). A high rate of decay indicates a high mean
phonon number. Examples of this decay for 7i = 0 and 10 are shown in 2.10(a), using a Lamb-Dicke
parameter of 7 = 0.06, that of a “°Ca™ion with 1 MHz motional frequency. Measured Rabi oscillations
can be fit using Eq. 2.90 to infer the mean phonon number.

(a) Carrier decay (b) Sideband thermometry
/ —_— 7 =0
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2 (0 VO G L AL A P\
£205¢ (O PR L AN I L P R
§ ‘\ 1 1 ! (. \ 7
i 1 \
VAR
0
0 1 2 3 4 5 0 5 10 15 20 25
Time (21/Q) Time (21/Q)

Figure 2.10: Examples of motional mode occupation (phonon number) measurements using # = 0.06, through (a)
decay in Rabi cycles when exciting a carrier transition at mean phonon number 7 = o and 10, and (b)
development of blue and red sideband (bsb, rsb) excitation for 7i = 0 and 1.

-Sideband thermometry-

Alternatively to the carrier oscillations, we can monitor the excitation development when applying a
beam on resonance with the red and blue motional sideband. The Rabi frequencies of these interactions
are Oy, ,—1 = Qu+/n for the red sideband, and (), 11 = Qn+v/n + 1. For a thermal distribution, the
excitation probabilities evolve as

P|(1I>Sb) = Y Pu()sin® (()17;/%) (2.91)

n=0
P|(1b>sb) — Z P, (171) sin? (QW V;’l + 1t> , (2.92)
n=0

which are shown for 77 = 0 and 7 = 1 in Figure 2.10(b).

20 A Doppler cooled ion, or one that has undergone heating from a ground state, is generally considered to have a thermal

distribution.
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Noting that the n = 0 term in in the sum of P‘(lr; b) is zero, we can rewrite it as
(rsb) " - (Q;y\/ﬁt)
P = ——sin 2.
N B o T 2 (2.93)
> gttt Qi+ 1t
= Z ——sin“ | —————— (2.94)
= (n41)+2 2
T (bsb)
=71 (2:95)

where the substitution 7i +1 = n was used. The ratio between the red and blue sideband excitation
is thus only dependent on the mean phonon number 7, given by R = Pl({; vy P|(1b>5h) =a/(n+1).
Measuring this ratio allows us to estimate the mean phonon number, as 7i = R/ (1 — R). Note that for
i > 1, R approaches 1, and becomes increasingly less reliable as a measurement of phonon number.
At higher phonon numbers, typically around ten or more, carrier excitation measurements are more
accurate indicators of ion temperature. However, unlike with sideband thermometry, carrier excitations
do not readily distinguish heating of multiple modes. Should this distinction be desired, more delicate
curve fitting, and/or multiple beams with different wavevectors are required.

2.3.5 Coherence time

This section has so far only considered qubit operations involving pure states, which were formally
defined in Section 2.2.5 in terms of the density operator tr(p?) = 1, and informally defined as states
whose Bloch vectors have unit length, and thus lies on the surface of the Bloch sphere. High fidelity
quantum computation requires that qubit states remain pure, which implies that decoherence should
be avoided [9, 96]. Qubit dephasing mechanisms, such as fluctuations in the magnetic field or laser
phase, lead to a loss of coherence over time. It is therefore beneficial to characterize how long a qubit’s
quantum coherence is maintained. In a trapped ion experiment, the coherence time is obtained using a
Ramsey sequence, which is outlined below and schematically shown in the Bloch sphere representation
in Figure 2.11.
A qubit is initialized in |0). A Ramsey measurement consists of the sequence

R(7t/2,0) = tyait = R(71/2,¢) (2.96)

where t,,i; is a chosen waiting time between pulses. The first pulse prepares the state 1/+v/2(]0) — i [1)).
If the second pulse is applied without a change in phase with respect to the first, R(7t/2,¢ = 0),
ideally the state |1) is fully populated. Similarly, a laser phase change of ¢ = 71, R(71/2,¢ = ), ideally
fully returns population to |0). Sources of noise (most commonly changes in magnetic field and laser
frequency) during the waiting time cause the qubit phase to change on a shot-to-shot basis, after which
the final pulse no longer fully transfers to |1) and |0). The loss of contrast between these two states
indicates qubit dephasing, and can be obtained as a function of wait time. Figure 2.11 schematically
shows this decay process in the Bloch sphere representation.

The qubit phase could evolve coherently during the waiting time, which, in the presented scheme,
would be detected as a loss of contrast. This could occur, for example, if the frequency of the laser
pulses is marginally off-resonance from the transition it is probing, which results in a constant qubit
phase accumulation during the waiting time. Scanning the laser phase of the second pulse over the full
range ¢ € [0,27] instead of just at ¢ = 0 and ¢ = 7 ensures that maxima and minima in population
transfer are still found and contrast due to decoherence can be established. The plot in Figure 2.11
displays an example of the output of such a scan at two wait times. The wait time required for contrast
to reduce to 1/e =~ 0.37 is known as the T-time of the qubit.

When characterizing sources of decoherence, one can distinguish noise in two timescales. ‘Fast’
noise arbitrarily alters the qubit phase during an experimental cycle, and is difficult to actively correct
for. ‘Slow’ noise is considered to be stable during a single cycle, but can result in a different qubit
phase evolution in each subsequent experimental cycle. The influence of this type of noise can often
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Figure 2.11: Bloch sphere representation of a Ramsey sequence for a coherence time measurement. A state along
the equator dephases due to environmental noise, shown by the fanning out of Bloch vectors. This
spread limits the population transfer to |0) and |1) with the final 77/2 pulse. Scanning the phase of
the final pulse results in the plot on the bottom left, where the contrast indicates qubit coherence.

be corrected for and can drastically increase the qubit coherence time. In Ramsey sequences for
determining qubit coherence, this type of noise can be accounted for by including a so-called echo
pulse, which is an additional 7-pulse, R(7t,0), midway through the waiting time. Such a pulse maps
the position of a Bloch vector on the equator to another point on the equator, mirrored on the yz-plane.
As a consequence of this mirroring, a constant phase shift during the waiting time before the echo
pulse is undone (canceled out) by an opposite phase shift after the echo pulse. The echo sequence is
given by

R(7t/2,0) = t“;“t = R(7m,0) = t“;“t = R(7t/2,¢), (2.97)
which cancels out linear phase drifts. More complex phase drifts can be canceled with more elaborate
echo schemes [97, 98].

Coherence time is inherent to the states chosen to encode the qubit. For example, the frequency of
different transitions are unequally sensitive to fluctuations in magnetic fields and will exhibit different
coherence time in the presence of magnetic field noise. One can therefore perform coherence time
measurements on various transitions to infer the contribution of magnetic field noise to decoherence.
Additionally, a ground state qubit is insensitive to laser field noise, and thus also serves as a good
indicator of magnetic field noise. A coherence measurement of a ground state qubit (using only optical
transitions) is done with the sequence

R(7/2,0))0)p = R(7,0) 110D = twait = R(7T, 70) 1yesp = R(7T/2,¢)0yesD (2.98)

where the subscript denotes the transition that the rotation operation applies to (see Section 2.2.7).
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1) [n),,

Figure 2.12: Schematic of MS gate levels and transitions

Measuring of coherence between states is not limited to electronic states of the ion: The coherence of
motional states can be queried. This is particularly useful for estimating fidelity of gates that make use
of the motional modes, such as entangling gates. Motional coherence is measured with the sequence

R(7r/2, 0) = R(T[/ 0))rsb = twait = R(n/ ﬂ))rsb = R(7‘L’/2, 4)) (2.99)

where the subscript rsb denotes a pulse on a red sideband. Such sequences also have variations that
include spin echos.

2.3.6 Entanglement

Qubit entanglement plays a vital role in QC. A multitude of techniques to generate ion-ion entanglement
exist [67, 79, 99—-104], most of which make use of multiple ions” shared motion to mediate the gate
action. One of the commonly used entangling gates for optical qubits is the Melmer-Sorensen (MS)-gate
[79], which produces an entangled Bell-state. The MS-gate is described thoroughly in Ref. [105] and
is qualitatively summarized below. The desired gate operation is described in Section 2.2.7. The
operation is realized by a bichromatic light-field which addresses two or more ions simultaneously.
The bichromatic light field has a frequency component that is detuned by —é from a red motional
sideband and a second frequency component that is detuned by J from a blue motional sideband. The
levels scheme of two ions under such a light-field interaction is shown in Figure 2.12. The starting state
|00) |n),,, with mode occupation number 7, is excited through |10) [n 4 1), + |01) [n + 1), to |11) |n),,.
Due to the detuning from the sidebands 9, the states containing |n + 1),, destructively interfere after
time t = 27t/|d|. The two-photon process that leads to |11) |n) is effectively a Raman transition and
does not destructively interfere. An appropriate choice of beam power creates a superposition of
|00) |n),, and |11) |n),. The beam power is set to Q) = 6/ (41), where Q) is the carrier Rabi frequency
and # the Lamb-Dicke parameter (see Section 2.2.6).

At the gate time t = 271/|6|, the Bell state 1/1/2(|00) +i|11)) is generated. To validate that this is a
pure state, a global analysis pulse is applied to the output state of the Ms-pulse. Using the notation
introduced in Section 2.2.7, the analysis pulse operation is given by R(77/2,$), with a variable phase
¢. At phase ¢ = 0,71/2, ..., this pulse ideally produces an even distribution of populations of all
possible states, [00), |01), |10), and [11). At phase ¢ = 71/4, odd terms (|01) and |10)) destructively
interfere, and population remains in |00) and |11). At ¢ = 377/4, even terms destructively interfere,
and population is placed in |01) and |10). The amount of occupation in either the even states or the odd
states is quantified with the so-called parity. The state’s parity is given by Pjogy + Pj11) — Plo1y — P10y,
which has the value 41 when only even states are occupied and —1 when only odd states are occupied.

Scanning the phase of the analysis pulse and analyzing the parity of the resulting state reveals the
purity of the entangled state, since phase coherence is required for destructive interference. The contrast
in such a parity scan, together with the measured state population, are used to determine the fidelity
of the MS-gate operation. Fidelity [11] is a measure of how close a measured state, characterized by the
density operator p, is to the intended state, in the case of the Ms-gate given by |g) = 1/+/2(]00) +i[11)).

The fidelity F is given by F = /(| p |¢).
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EXPERIMENTAL SETUP

A common mistake that people make when trying to design something completely foolproof is to underestimate
the ingenuity of complete fools.
— D. Adams, Mostly Harmless

This chapter covers the design of the experimental setup, which aims to demonstrate the prospect
of scalability in QC. The setup is a cryogenic apparatus that houses a planar segmented surface trap,
with the ability to trap and manipulate two different ion species, #°Ca*and 8Sr.

The cryogenic setup has been endearingly named ‘Cryostina®’ by its initial designer, Matthias Brandl.
The setup and many of the considerations that went into designing it are described in detail in the
publication Ref. [106], and in greater detail in the thesis Ref. [107].

This chapter covers, in lesser detail, much of the setup, and highlights some of the notable upgrades
that have been made since those publications. Throughout the course of my Ph.D. research, the setup
has undergone many refurbishments and has seen multiple different ion traps, the majority of which
have had the pleasure of trapping ions. The research discussed in further chapters of this thesis has
been carried out at various stages of the setup’s lifetime. An overview of the evolution of the cryogenic
setup and ion traps is shown in Figure 3.1.

Date Setup Trap Project

January 2014 Cryostina V1
March 2014 Mainz trap

May 2014 Yedikule trap P

June 2015 Cryostina V2 1
July 2015

Berkel Chapter 5
erkeley trap lon crystal
rotations
December 2017 Cryostina V3 —
January 2018 ~HOA V1
February 2018 ~ HOA V2
May 2018 ~ HOA V3
August 2018 ~ HOA V4
Chapter 4
RF heating
December 2018 ~ Golden Gate Chapter 6
trap Engineered
Present (2022) dissipation

Figure 3.1: Timeline of various versions of the cryostat setup and traps. Trap images taken from [108-110]

1 Cryostina follows our group’s naming convention that cryostats should have human names with cold puns. Other examples
include Coolien, Iceabelle, and Marcold.
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-A bit of history-

The cryogenic vacuum chamber was first closed for operation in early-2014. At this point, a trap
provided by Ferdinand Schmidt-Kaler’s ion trapping group in Mainz was installed. Unfortunately,
after several months of fruitless attempts to load ions, the trap was discarded. As it was becoming
critical® to demonstrate that the experimental setup was at a stage in which ions could be reliably
trapped, we sought out a quick alternative. A “Yedikule’ trap was provided by the cryogenic trap
team in our group, courtesy of Michael Niedermayr [108]. This trap stably stored the setup’s first
calcium and strontium ions. While a good test-bed for learning the ropes of aligning optics, tuning
trapping parameters, and trap characterization, the Yedikule trap ultimately would not be useful for
QC experiments, as it lacked the necessary optical access to address single qubits without adverse laser
scattering. Preparations were being made for a newer version of the cryogenic setup, and for a new
trap.

After a solid year of designing, measuring, and otherwise preparing the upgrades, the new version
of Cryostina was assembled, with a trap designed and provided by Hartmut Héffner’s group at
University of California, Berkeley (UCB)3. This version of the experimental setup was in use for several
years. Coherent operations on the qubit transitions of both °Ca*and 88Sr* were available, allowing
us to characterize heating rates and coherence times, and set up gate sequences, even doing mixed-
species gates. Furthermore, the experiment acquired an upgraded version of the arbitrary waveform
generator (AWG) voltage supply, the ‘Bertha’, provided by Prof. Schmidt-Kaler’s ion trapping group in
Mainz. This allowed us to investigate ion transport, which led to an in-depth study of coherent ion
crystal rotations and is the topic of Chapter 5.

In the meantime, preparations were made for another experimental adaptation, which was assembled
in December, 2017. This version exhibited multiple upgrades, such as improved DC wiring and filtering.
The main design goal, however, was to incorporate a new trap: Sandia National Laboratory’s High
Optical Access (HOA) trap [109]. The package holder, which uses electrical connectors known as fuzz
buttons* in a standardized land grid array, was designed with the idea that trap replacement would
be reasonably simple. As it turned out, repeated trap replacement was a necessary operation (and was
hardly “reasonably simple”). The first HOA trap never held ions, and the subsequent three HOA traps
all exhibited high heating rates, and laser-induced trap charging, neither of which being desirable
for QC. Also, we were unable to load calcium and strontium ions simultaneously, which very much
defeated the purpose of a setup intended for mixed-species operation.

To bring the experiment back on the path of operating in the scope of quantum computation, a new
trap was designed. The new trap, the ‘Golden Gate’ trap, was based on the already proven design
of the Berkeley trap. It was bonded onto a chip carrier with the same footprint as the HOA trap, and
was thus straightforward to plug in to the existing setup. Shortly after the installation, ions were
trapped?, even mixed-species chains. This trap was and will be used for multiple projects, including
an investigation of RF heating and recrystallization of ion clouds (Chapter 4), and dissipation through
engineered resonance with mixed-species ion chains (Chapter 6). Additional projects, to be covered in
the Ph.D. thesis of Lukas Gerster, include Bayesian gate optimization [111] and using phase gates for
generating a higher-dimensional version of qubits, qudits. [112]. At the moment of writing, the Golden
Gate trap is still in operation in our experimental setup.

The following section gives an overview of the experimental setup, specifically the latest version
which has been used for most of the work presented in this thesis. The ion crystal rotation project
(Chapter 5) was done on an earlier version of the setup. The description of the setup is, however,
for the most part applicable to all experiments described in this thesis. One notable difference is the
electronic filters of the direct current (DC) electrode voltage lines, which were redesigned based on
experimental difficulties present in ion crystal rotations. The filters used during these experiments are
therefore explicitly discussed in Chapter 5.

2 Note 8 in Appendix e
3 Note 9 in Appendix e
4 Custom Interconnects
5 Even with accidentally scrambled DC electrode wiring
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3.1 SETUP OVERVIEW

This section covers the experimental setup used for the experiments presented in this thesis. Most of
what is described in this section is also covered in detail in [107]. Section 3.1.1 describes the cryogenic
apparatus in which the surface trap is mounted. Section 3.1.2 describes the laser setup, and Section
3.1.3 covers the electronics and software that make up the experimental control.

3.1.1  Cryogenic apparatus

Figure 3.2 shows a schematic overview of the cryogenic apparatus, whose components are discussed
below.

3.1.1.1  Cryostat

While not considered an absolute requirement, QC with ions trapped in a surface trap greatly benefits
from a cryogenic setup. A primary reason is the known correlation between anomalous excitation
of a trapped ion’s kinetic energy and trap surface temperature [34, 43, 113]. Another benefit of a
cryogenic setup is improved vacuum pressure due to cryopumping [44]. Gas particles condense on
cold surfaces, and are thus removed from the vacuum volume. At temperatures of 4K and below,
most molecules that are typically prominent in vacuum setups experience a significant drop in partial
pressure. At this temperature, achievable with modern helium-based cooling techniques, vacuum
pressures below 7 x 10717 mbar are reachable [114]. Typical ion trapping setups used for QC aim to
have ultra-high vacuum (UHV) environments below the 1 x 10~!9 mbar range, to have acceptably low
rates of collisions between trapped ions and background gas particles. The fact that such low pressures
can be reached with cryopumping brings another advantage to the table: Cryogenic systems can
benefit from a low turn-around time. After breaking vacuum in order to install a new trap or perform
other setup upgrades, a room-temperature setup would ordinarily require several weeks of baking
in order to reach a sufficiently low pressure. The ability to cryopump, however, eliminates the need
for a bake-out. Turn-around time is then only limited by the time required to temperature-cycle the
system, and the assembly/reassembly time. In our setup, we ideally do not wish to make use of this
benefit: once a trap is installed, it should stay in. However, the performance of surface traps is difficult
to predict before testing it with ions, and it may take several iterations of trap replacement until a
suitable trap is installed.

There are many types of devices available that provide cryogenic environments. The main contenders
for reaching the 4 K range or lower can be roughly subdivided into three types: 1) Dilution refrigerators,
2) closed-cycle cryocooling, and 3) wet cryostats. Dilution fridges are massive, complicated, offer
very limited optical access [115, 116], and are therefore impractical for trapped-ion experiments. The
achievable temperature is in the sub-Kelvin range, which for trapped ion purposes is considered
‘overkill.” More commonly used in ion trapping experiments are closed-cycle cryostats, which operate
through diabatic expansion and compression® of helium gases. These types of cryostats benefit from
a relative ease-of-use and do not require a supply of liquid cryogens. Unfortunately, their operation
requires moving parts to drive the expansion and compression cycle, and thus introduces a source of
acoustic, vibration, and magnetic field noise in the lab. Depending on the experimental requirements,
these sources of noise may be tolerable. However, such machines rarely produce low enough vibrations
and magnetic field noise to achieve the necessary qubit coherence associated with quantum information
processing. Low-noise operation with closed-cycle systems for QC has been achieved, but requires
extreme measures to decouple sources of noise from the ion trap [118] while maintaining high cooling
power.

With wet cryostats, the ion trap is cooled down by thermally connecting it with a liquid coolant.
For operation in a sufficiently low temperature (4 - 20 K, below the vapor pressure of most common
background gas molecules [119]), the choice of liquid coolant boils down to liquid Helium. Wet
cryostats can be further subdivided into bath cryostats and flow cryostats. In the former, a part of

Essentially the same principle of operation as a kitchen refrigerator, which would be considered a cryostat if it managed to cool
food down below 120K [117].
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Figure 3.2: Cross-sectional view of experimental apparatus
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the setup is simply submerged in a supply of helium (for example, the super-conducting magnets
in MRI machines). Flow cryostats provide control over the flow of the cryogenic liquid, as the name
suggests, thus allow a higher degree of control of operation temperature. Flow cryostats do not require
moving mechanical components, thus do not produce magnetic field noise, or acoustic noise in the lab.
While not immune to mechanical vibrations (a boiling liquid does, after all, vibrate), these are at a
much more manageable level compared to closed-cycle systems. All advantages and disadvantages
considered, given the finite lab space, and low-noise requirements of our setup, a flow cryostat has
been chosen?. The cryostat uses liquid Helium as a coolant®.

As shown in Figure 3.2, the flow cryostat is installed in the top of the apparatus. The metal shaft
provides an insert for a transfer line (not pictured) which mediates the flow from the liquid storage to
the coldfinger, where it evaporates. The coldfinger provides the main source of cooling power for the
apparatus, and is thermally connected to the trap. Two layers of radiation shielding limit radiative heat
transfer from the surrounding room-temperature vacuum chamber to the trap. The trap sits within,
and is thermally directly connected to, the inner heat shield (~ 30K), which in turn is surrounded by
the outer heat shield (~ 120 K).

The coldfinger is thermally connected to the inner shield with oxygen-free high conductivity (OFHC)
copper wires. We have used a collection of thin wires?, crimped in cable lugs. Using a collection of
thin wires allows us to mechanically decouple the coldfinger from the inner heat shield, and hence the
trap, while maintaining good thermal contact between the two. The inevitable vibrations occurring
during the evaporation of liquid coolant in the coldfinger are attenuated by the flexible copper wires.
In total, 12 crimped collections of copper strands are used to connect the coldfinger and inner shield.
The connecting rod between the main inner shield body and the connection to the coldfinger is used
as thermal anchoring [120] for the wiring that provides DC voltages to the trap. The inner shield is
discussed in more detail in Section 3.1.1.2.

The outer shield is divided into three sections, the upper, mid, and lower outer shield. The upper
outer shield provides a secondary source of cooling power for the setup: A clamp above the exhaust
enables heat transfer between evaporated coolant and the the upper outer heat shield. Similar as before,
crimped OFHC copper strands are used to thermally couple the upper and mid outer shield, while
suppressing vibrations originating from the flow cryostat. The mid shield provides a large surface
area for thermal anchoring of the DC electrode voltage wiring. Additionally, the mid shield houses the
electrical filters for this wiring. The lower outer shield does not have any responsibilities other than
being a radiation heat shield.

The flow cryostat has a CF flange connection to the vacuum chamber by means of a metal bellow,
and a set of rubber spacers separating the two. The bellow, a ribbed deformable metal, attenuates
vibrations between the cryostat and vacuum chamber.

The previously described copper strands and the bellow mechanically isolate the cryostat from
the lower shields and vacuum chamber in which the trap is placed. The trap is thus mechanically
“loosely” connected to the cryostat, which ensures that vibrations caused by the cryostat are minimized
at the trap. The trap must, however, be rigidly connected to the optical table, to ensure that trapped
ions do not vibrate with respect to the optical beam paths. The inner and outer shields are therefore
rigidly connected to the vacuum chamber, which is mounted to the optical table. An ideal trade-off
between an as-high-as-possible rigid connection and an as-low-as-possible cross-section to minimize
heat transfer is a stainless-steel hexapod structure. The hexapod, seen in the central column above
the inner shield in Figure 3.2, holds the outer and inner shield in place with respect to the vacuum
chamber, which is a lot of heavy lifting for just a few narrow steel tubes.

The ion trap is mounted inside the inner shield, at the bottom of Figure 3.2. The vacuum chamber
and outer and inner shields provide optical access for various beams and fluorescence detection, from
8 different directions all within horizontal plane. The vacuum chamber is placed in a hole in the
custom designed optical table such that this horizontal plane in which the trap sits coincides with the
height of the optical components on the table.

7 Model ST-400-1, Janis
8 Note 10 in Appendix e
9 Stripped from a high-quality audio cable
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3.1.1.2 Inner shield

The inner shield has the following purposes and requirements:

e Shield the trap from thermal radiation
¢ Shield ions from magnetic field fluctuations

* Maintain a high numerical aperture optical access to trapped ions to enable single ion addressing
and fast state readout.

The design considerations of the inner shield are, as with much of this section, described in detail in
Ref. [107]. Since that publication, the experimental setup has undergone a refurbishment, which will
be (or is, depending on when this is being read) described in the Ph.D. thesis of Lukas Gerster [121]. A
short overview of the latest version of the inner shield is provided here.

A schematic of the inner shield is shown in Figure 3.3. The shield is a copper cylinder with
two-centimeter thick walls. Due to the skin effect, this thick copper wall attenuates magnetic field
fluctuations. This attenuation is enhanced with the inner shield in the cryogenic environment, since the
conductivity of the cold copper walls increases by orders of magnitude with respect to conductivity
at room temperature. Measurements that determine the magnetic field attenuation are described in
Ref. [106]. The inner shield is composed of two separate parts, as shown in Figure 3.3(a), to provide
access inside of the shield during assembly. The parts have been chosen to separate in a vertical plane,
as opposed to a previous version of the inner shield that opened horizontally, from the bottom. This
decision ensures that Eddy currents around the axis corresponding to the externally applied magnetic
field (the quantization axis) do not cross any seams in the shield parts. These currents therefore have
the lowest resistance around the quantization axis, and the highest magnetic field attenuation.

Effective attenuation of magnetic field noise and shielding of radiation requires that the inner shield
is as enclosed as possible, meaning that the surface area of ‘holes’ in the shield should be kept to
a minimum. This requirement is in conflict with the necessity to have good optical access of the
ion. Individual ion addressing requires a beam to be tightly focused, such that neighboring ions,
typically spaced several micrometers apart, are not illuminated. This means the beam must have a
high convergence angle, or in other words, a large numerical aperture (NA). For a 729 nm beam to
achieve a waist diameter of 2 um, an NA of about 0.22 is required.

Additionally, efficient state detection requires a large amount of fluorescence to be collected from
ions, which also implies a large NA. This high optical access is achieved by placing lenses inside of
the inner shield, shown in the cross-sectional cutout in Figure 3.3(b) (Note, this cross-section does not
align with the cut between shield parts in (a) ). A copper plate inside the inner shield serves as a lens
mount. The same plate is a holder for the trap assembly, including the resonator, discussed later in
this section. The lens mount holds lenses on both sides of the surface trap. The trap, also discussed
later, is positioned such that the normal of the surface plane is horizontal. The lenses are placed ‘in
front of” and ‘behind’ the surface of trap, meaning that the lenses’ principal axes align with the surface
normal. The trap has a slot in the surface to allow imaging and addressing from the back side. The
back lens has an NA of 0.25 and a focal length of 25 mm. The front lens is discussed below.

One of the design goals of Cryostina V3 was to push state readout to its limits, by attempting to
collect fluorescence from nearly a full semi-spherical solid angle of the ion source. A 25mm 0.83 NA
lens™® was chosen for this purpose. The lens has a focal length of 15 mm. The short focal length makes
it such that the lens must be placed in a very precise position with respect to the ion trap: Ideally,
when the lens is placed 15mm away from the ion, the ion’s fluorescence is collected and collimated.
Similarly, the intended use of the lens is to focus a collimated laser beam onto an ion. However, if
the lens were 1 mm closer to the ion, the collected fluorescence diverges, and more than half of the
fluorescence intensity does not escape through the apparatus’s viewports. Lens placement is therefore
critical for good ion imaging and addressing. A similar argument can be made for the radial placement
of the lens, i.e. ensuring that the lens’s principal axis coincides with the ion.

Unfortunately, it is difficult to perfectly predict the lens’s position after assembly and cooldown of
the cryostat. We have therefore opted to place the lens on a stack of two nanopositioners'*, which

10 Edmund Optics, #67-245
11 Attocube ANPx51 and ANPz51
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allows us to control the lens’s height and distance from the trap. The inner shield is not big enough to
include a third nanopositioner to control the third translational degree of freedom. Since this direction
corresponds to the trap’s axial direction, we can instead move the ion to align it with the lens’s
principal axis.

The lens is held in a metal mount with a set of plastic screws. The metal mount has extruded
arms in which the lens is placed, designed to minimize mechanical stress when the mount contracts
when cooled down. The lens is not centered above the nanopositioner stages. To reduce torque on the
nanopositioners, a counterweight is made by extruding the lens mount towards the rear, away from
the lens.

The lens has a back focal length (the distance between the flat side of the lens and the focal point, the
ion) of 8.4mm. From a trapped ion’s point of view, this is a very close proximity for a large dielectric
material to be [31]. Charging of the lens can alter the electric field that the ion experiences, which can
alter the ion’s position and motional frequency, and induce motional excitation. In a previous version
of the setup, Cryostina V2, a metal clamp above the trap was used to shield these fields. The opening
in the clamp limited the optical access to the trap to an NA of approximately 0.25. As this defeats the
purpose of the 0.83 NA lens, another solution is required.

One option is to coat the lens with a conductive film, such as indium-tin-oxide (ITO). A typical
ITO-coated substrate is has around 85% transmissivity, and about 10 x 10~% Q cm resistivity [122]. The
85% transmissivity is tolerable but not preferable. Instead, we place a grid of thin gold wires midway
between the back of the lens and the trap. Such grids are commercially available, but offer up to about
95% transmission for our desired spacing. We decided we could do better, and handmade a gold wire
grid, shown in Figure 3.4(a). Gold wires with a diameter of 20 um, normally used for wire-bonding,
are spanned across the clamp that holds the trap carrier in place. The clamp has recessed grooves in
which the gold wires can be placed, so that they are neatly equidistant, with a 1 mm spacing. The wires
are glued in place at the grooves. The clamp itself is made of titanium and is electrically grounded.

To determine the effectiveness of the shielding grid, electrostatic simulations are done using Comsol,
which models the electric field of the lens-grid-trap setup. A test voltage of 1V is applied to the surface
of the lens. This corresponds to a uniform surface charge of 0.05C pm~2, which is motivated by Ref.
[123]. Figure 3.4(c) shows the electric field (in the direction normal to the trap surface) between the trap
(kept at 0V) and the lens, shown with and without the grounded mesh grid in place. The placement
of the trap, grid, and lens are shown schematically in Figure 3.4(b), which also shows how the field
potential is shielded by the mesh. If the mesh were not there, the potential transitions more or less
linearly from 1V to 0V from the lens to the trap. The dashed line in Figure 3.4(c) and the blue dot in
(b) show the height at which the ion is trapped, 110 pm above the surface of the trap. We conclude
that the trap region experiences a tenfold reduction in electric field noise coming from the lens when
the grid is in place.

The lens-grid-trap setup has been similarly studied using the software Zemax to determine the
optical properties of the grid. The grid has a 98% transmission. A beam passing through the lens,
focused onto the ion, experiences negligible distortion due to the grid.

Ultimately, the high-NA lens has been utilized for state-readout of “’Ca*ions. We have found that
we can distinguish the qubit state with a certainty of more than 99.99%, with a 50 us detection time.
This is more than an order of magnitude faster than typical detection times in other ion trap setups.

3.1.1.3 DC voltage supply

Trapping ions in a surface trap requires a combination of RF and DC voltages to be applied to trap
electrodes. This section describes the DC voltage supply. We use the term DC to contrast it with the RF
supply, but note that these voltages are not necessarily static throughout an experimental sequence. In
particular, in Chapter 5 ion positions are manipulated during a sequence by applying time-dependent
voltages to trap electrodes.

A schematic overview of the wiring and filtering for the DC voltage supply is shown in Figure
3.5. Voltages are supplied by a multi-channel AWG [124], provided to us by the group of Ferdinand
Schmidt-Kaler at the Johannes Gutenburg University, Mainz'?. A centralized field programmable

12 Where the device has acquired its name, Bertha
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Figure 3.4: (a) Picture of the gold mesh grid for shielding the trap from stray electric fields. (b) Electrostatic
simulations indicating how the grid (not to scale) shields the potential of a uniformly charged lens
surface. (c) Electric field perpendicular to the trap plane, with and without the grid in place. The
dashed line indicates the ion position.

gate array (FPGA) controls the digital voltage waveform of 8o digital-to-analog converter (DAC) output
channels. The DACs have a £40V output range, with a voltage resolution of 1.2mV. We have not
measured noise characteristics directly. See Ref. [124] for noise characteristics on a similar device.

Digital voltage waveforms, in this thesis usually referred to as voltage sequences, have a maximum
sample rate of 2 MHz. Sequences can be initiated by a transistor-transistor logic (TTL) trigger signal.
Predetermined voltage sequences can thus be used as sub-steps of experimental cycles. In our setup,
however, the voltage sequences must be pre-computed and cannot be altered ‘on-the-fly’ between
experimental cycles. Section 3.1.3 provides more information on how the AWG is implemented within
the context of experimental control.

Voltages output by the AWG are redistributed, into four handmade 25-channel cables, designed to
optimally shield the voltage-carrying wires from external electric field noise. The cables are optionally
passed through a set of filters. These third-order RC filters (R = 100k(}, C = 120nF) have a cut-off
frequency at 12 Hz, and are removed when experiments include dynamic voltage sequences. Otherwise,
when only static voltages are required, the filters are kept in, since they reduce motional mode heating
of the ion (see Section 2.3.4).

A flange on the vacuum chamber with four 25-pin D-Sub connectors connects the air side and
vacuum side. On the vacuum side, it is desirable to use wires with a non-negligible (Z 1) electrical
resistance, to reduce thermal coupling between the room-temperature vacuum chamber and cryogenic
trap. Previously, individual strands of phosphor-bronze were used, which were impossible to keep
untangled, similar to having 50 headphone cables in your pocket. To simplify the cable management,
the in-vacuum DC lines are distributed over four loom cables’3. Outgassing rates of these cables are
low enough for use in cryogenic operation, but are not recommended for room-temperature UHV
experiments.

The mid outer shield has grooves on its outer surface to which the loom is clamped, before passing
into the shield. This thermally anchors the loom to the outer shield temperature. Inside the mid outer
shield, there are four sets of filter boards, each with a micro-D-Sub input and output. The filter boards
are second-order RC filters for each DC line, with R = 5002 and C = 1.2nF. The cutoff frequency,
fe = 270kHz, is chosen to filter noise at the ions” motional frequencies (in the MHz range), while
allowing voltage waveforms that transport ions on tens of ps timescales to pass through. An RC

13 Custom made manganin Cryoloom, micro-D-Sub terminated, CMR-direct
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Figure 3.5: Schematic of DC electrode voltage wiring and filtering

filter circuit has been chosen instead of the previous version’s LC filter. The reason for this change
is the behavior of the ground wires, which in reality are not perfectly grounded due to finite cable
resistance. This non-negligible wire resistance creates an effective crosstalk between electrodes when
time-dependent voltages are applied. This effect is discussed in more detail in Section 5.4.3.2, where the
filtering is put in context of generating sequences of electrode voltages for manipulating the position
of ions. Here, it is discussed how the effective crosstalk across electrodes of time dependent voltages
affects the design of the sequence. The main lesson learned is that designing voltage sequences is
much simpler when the effective crosstalk is minimized. Circuit simulations with the Python PySpice
package have shown that RC filters outperform LC filters in this regard.

After the set of outer shield filters, the wires are thermally anchored to the outside of the inner shield,
enter the inner shield, and are attached with micro-D-Sub connectors to a printed cicuit board (PCB)
on which the trap carrier is mounted. Capacitors (4 nF) are placed on the PCB, which shunts parasitic
RF noise picked up from the trap’s RF drive. The PCB is mounted on the same mount that holds the
in-vacuum lens assembly, described in the previous section. The DC lines on the PCB terminate at pads,
laid out in using the standardized 100-pin PGA footprint. The PCB has a ceramic mount to hold a trap
chip and function as an electrical interposer. The mount has integrated Fuzz buttons'. Fuzz buttons
are springy gold wire meshes that resemble compressible pins. The Fuzz buttons in the carrier mount
electrically connect the trap carrier and the PCB. The design of the trap carrier, and the incorporation
of the trap, are covered in Section 3.2.

3.1.1.4 RF voltage supply

The functionality of Paul traps, also known as RF traps, require an RF voltage to be applied to
dedicated trap electrodes. In this section, the RF supply is discussed.

The voltage amplitude of RF electrodes of surface traps is typically on the order of hundreds of
volts, supplied at tens of MHz. Such voltages are often reached with the help of RF resonators, which
produce a voltage gain of an input RF signal at a specified frequency. At the highest level, an RF
resonator is an LC-circuit. The capacitance C is for the most part given by the trap’s RF electrodes.
The inductance comes from a coil, where L is chosen such that the desired resonance frequency,

14 Custom Interconnects
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QOrr ~ 1/V/LC is achieved. An externally applied electric field can resonantly build up power in
the LC circuit. Losses in this LC circuit, caused by resistance in the wiring and loss in the trap’s
dielectric layers, limit the power that can be stored in the resonator. The performance of resonator
is characterized by its quality factor and voltage gain. The quality factor indicates how narrow the
frequency response of the resonator is. It represents the relative amount of energy lost in an oscillation
cycle, and is proportional to the square of the voltage gain. Aiming for a high quality factor, and thus
a high voltage gain, minimizes the amount of input power needed to reach the desired voltage on the
trap’s RF electrodes. Less supplied RF power means less heating of the trap, which is desirable for
stable cryogenic operation. The resonator’s quality factor is optimized by minimizing the effective
resistance in the LC circuit. It is therefore imperative to place the coil as close as possible to the trap,
and to use low-resistance materials in the circuit.

If the coil were to be placed outside of vacuum, as is commonly done with room-temperature
traps, the required low resistance electrical connection between the coil and the trap would present a
tremendous heat load directly on the cryogenic trap. Operation with an out-of-vacuum coil is therefore
not an option. It should instead be placed at the same temperature stage as the trap, namely in the
inner shield. Space in the inner shield is limited, so implementing a bulky helical coil, a commonly
used type of coil for traps operated at room temperature, is impractical.

The suitably-sized inductor that we have landed on is a PCB-style toroidal wire coil’>, a brainchild of
Matthias Brandl. The design considerations and characterization of the resonator coil are described in
detail in Ref. [125], and will not be covered here. We have chosen a 63 loop toroidal coil, using 0.6 mm
silver wire. The coil was hand-woven into a ceramic substrate with holes milled out. An additional
coil loop acts as an inductive pickup wire, allowing us to monitor the power in the LC circuit. A PCB
that holds the RF matching network [125] is attached directly to the coil holder. The coil and matching
network assembly fit in the inner shield mount, directly below the trap PCB, see Figure 3.3. A small
hole allows the coil’s RF and ground wire to pass upwards to be soldered onto the trap PCB.

The matching network minimizes reflections in the RF signal in the transition from the supply
cable to the resonator. We use an additional LC circuit for matching, using the self-inductance of the
input line, and a set of capacitors to ground. The capacitance must be chosen such that impedance
matching is optimized for the electrical properties of the resonator at cryogenic temperatures, which
differ from those at room temperature. Therefore, before installing the resonator, several matching
tests have been done with a dummy™® trap in room-temperature and in liquid nitrogen baths, at
77 K. We then extrapolate which matching capacitance will minimize RF reflections at the intended
cryogenic temperature, about 30 K. We intentionally choose a capacitance for ideal matching at a
higher temperature than the inner shield temperature, since the resonator is expected to heat up when
supplied with RF power. In our experiment, we see that at the start of the day when first switching on
the RF supply that the resonance frequency drifts over the course of about an hour by a few percent
and that the on-resonance reflected RF signal decreases.

At stable cryogenic operation, the resonator operates at 40.38 MHz, has a voltage gain of about 80, a
quality factor of about 150, and less than 5% reflected power.

3.1.2 Laser setup

In this section, an overview of the lasers and the optical setup used in our experiments is given.

We have sets of lasers that allow us to trap two ion species, “*Ca™and 88Sr™. The lasers used in our

experiments are summarized in Table 3.1, and the relevant level diagrams are displayed in Figure 3.6.

The lasers are placed on optical tables that are separated from the cryogenic ion trap apparatus.

3.1.2.1 Laser tables

The wavelength of most beams are monitored and stabilized by a wavemeter'” which includes an
eight-channel fiber switch, and a proportional-integral-derivative (PID) module that feeds back onto

Note 11 in Appendix e

i.e. a trap whose RF electrode has a similar capacitance as the actual trap, but subjected to out-of-vacuum mistreatment that we
wouldn’t want to put the real trap through.

HEF-WS/8-2, Toptica
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Figure 3.6: Level schemes of Calcium and Strontium showing relevant levels for photoionization of atomic
#0Catand #SrT, and levels used in trapped ion experiments.

A (nm) | Description Transition
423 Photoionization 459 < 4P
375 4P — o0
Doppler cooling /
0Ca | 397 pp* 81 481/, ¢ 4Py
Detection
866 Repumping 3D3/2 < 4P1/2
854 3Ds/ <> 4050
729 Qubit control 451,y <+ 3D5)»
461 Photoionization 55 ¢+ 5P
405 5P, — 5Dy
88G, 122 Doppl'er cooling/ 55,5 ¢3 5Py /2
Detection
1092 Repumping 4D3/2 <~ 5P1/2
1033 4D5/2 <~ 5P3/2
674 Qubit control 5517 <+ 4Ds;

Table 3.1: Overview of lasers used in the experiment

some of the laser drivers, through which their wavelength is stabilized. This is an upgrade with respect
to Ref. [107], in which lasers” wavelengths were locked to an optical cavity, by means of a Pound-
Drever-Hall (PDH) lock. Now only the beams that are responsible for coherent qubit manipulation are
locked to an optical cavity, as a narrower linewidth is required than what the wavemeter lock can
provide. The wavemeter is specified to have a 2 MHz absolute frequency accuracy.

Below we provide an overview of the laser setups and tasks of the °Ca*lasers. The overview for
the 8Sr T lasers is nearly identical, and have respective wavelengths given in parentheses is the section
headings.

-Photoionization (PI): 423, 375 (461, 405) nm-

Ions are generated with two PI beams. A neutral beam of calcium atoms are emitted from an ‘oven’
(a tube of solid Calcium, heated above the temperature that Calcium vaporizes in vacuum, > 500K
[126]), providing a flux of atoms in the trapping region. The PI beams are continuously on while
loading ions into the trap. The 423 nm beam®® resonantly excites the 4S; < 4P; transition'% and the
375nm beam has an energy that exceeds what is required to ionize the excited atom. The 375nm is a
free-running diode laser. Having the two beams on simultaneously at the trapping region produces

Some works describe this beam as 422 nm light. To avoid confusion with the strontium Doppler cooling beam at 422 nm, in this
thesis the calcium PI beam is correctly rounded to 423 nm.

The fluorescence emanating from the ions in this transition can be used to detect if there is an atomic flux at the trap site, and is
thus used to tune the temperature of the oven, or to decide that an oven needs replacing.
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Calcium ions in the trap. Ions with low enough energy do not immediately escape the trap, and can
be cooled further by Doppler cooling.

The wavelength of the 423 nm beam is monitored by the wavemeter. No feedback is applied to
stabilize the wavelength, other than occasional manual fine-tuning. A suitable wavelength is initially
calibrated by maximizing atomic fluorescence from the flux of neutral atoms near the trapping region.
While attempting to load ions, the wavelength is swept around this calibration point by several
hundred MHz.

One slight difference between the ionization process of “°Ca*and #SrTis that after the initial
55y <+ 5P transition, strontium happens to have an excited level, 5D, at a convenient wavelength
of 405nm, from which auto-ionization is possible. While not strictly necessary to make use of this
transition, ionization is enhanced when coupling to it [127], which allows ion loading with lower
atomic flux, and therefore less contamination of the trap surface. 405nm diodes are easily available, as
they can be ripped out of any obsolete Blu-ray player.

The 423 and 375 nm beams were initially overlapped using a polarizing beam splitter (PBS) on the
laser table, as depicted in Figure 3.7, before being sent into an optical fiber to the experiment table.
In a revised version of the setup, the 375nm diode laser was moved to the experiment table, and is
overlapped with the 423 nm beam there. The Strontium setup is still as indicated in Figure 3.7.

-Doppler cooling and state detection: 397 (422) nm-

Doppler cooling and state detection is done using the 4S;/, <> 4P; /, dipole transition, at 397 nm.
This transition has a short natural lifetime, 7.7 ns. The 397 nm light is provided directly by a diode laser
(as opposed to the previous frequency-doubled 794 nm setup). The wavelength of the laser output is
monitored and stabilized by the wavemeter. The beam is split into two arms, each passing through
a separate double-pass acousto-optic modulator (AOM) setup. One arm, with a total frequency shift
of 200MHz, is used as the main Doppler cooling and detection beam. The second arm, the so-called
‘refreeze’ beam has a frequency shift of 120 MHz, and is thus red-detuned by 80 MHz with respect
to the main Doppler cooling beam. The ‘refreeze’ beam is a high-power beam, far-red-detuned from
cooling transition. The reason for including this beam is discussed in detail in Chapter 4, but to
summarize here: The main Doppler cooling beam is often not sufficient for cooling high-energy ions to
the point that they form an ion chain. The refreeze beam aids in this process. The main Doppler beam
and the refreeze beam are recombined with a PBS, and sent through an optical fiber to the experiment
table.

-Repumping: 866, 854 (1092, 1033) nm-

The cooling transition is not a closed cycle: there is a 6% chance that the spontaneous decay from
4Py ;, is to 3D3 /5, which is a meta-stable state. Population is repumped to the S <+ P cycle with 866 nm
light, which couples the states 3D3,, and 4P, /,, thus returning population to the cooling cycle states.

Population can additionally be ‘trapped” in the 3Ds /; state, for example at the end of an experimental
sequence in which this level is used as one of the two qubit states. Repumping back to the cycling
transition is done with 854 nm light, which couples 3Ds5,, and 4P;3,,. 854nm light is also used for
dissipative state transfer used for ground state preparation (optical pumping) and resolved sideband
cooling (see Section 2.2.8).

Both repumping beams are sent through a double-pass AOM setup, and are combined with a PBs
before being sent through an optical fiber to the experiment table. The AOMs function as switches,
allowing us to turn on and off the light at the ions within experimental sequences (see Section 3.1.3).

-Qubit manipulation: 729 (674) nm-

Most of our experiments use the 451/, and 3Ds/, levels as the two qubit states. Coherent transfer
between these states is done with pulses of 729 nm light. Qubit coherence, and thus the fidelity of
quantum operations, require the 729 nm light to be stable in phase, such that the laser linewidth is in
or below the single-Hertz regime. The wavemeter lock, used to stabilize the frequency of most of the
other lasers, has an absolute frequency accuracy of 2MHz, and a feedback bandwidth of 1kHz, at
best. This is by no means accurate nor fast enough for locking the 729 nm light for coherent control
of qubits. Instead, a high-finesse (F ~ 250, 000) optical cavity is used as a frequency reference. The
729 nm light is locked to this cavity using the Pound-Drever-Hall (PDH) method?°.

20 Using a FALC 110 (Toptica) as a locking filter
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The cavity mirrors are separated by ultra-low-expansion (ULE)-glass, which is temperature controlled
to the material’s point of zero expansion, at —0.6 °C. From beat measurements with other stabilized
729 nm sources (from the University’s ‘big lab” and from the IQOQI), an approximate linewidth of our
729 nm light of 10 - 15 Hz is inferred. More information about the high-finesse cavity, and the locking
scheme can be found in the Master’s theses of Lukas Postler [128] and Roman Stricker [129].

The cavity has a free-spectral-range at 729 nm of 3 GHz. A 240 MHz AOM is used to help bridge the
gap between the frequency of one of the cavity’s TEMgp-modes, and the frequency of the ion’s qubit
transition. The AOM can be used to control the intensity of light going into the cavity. A photodiode
before the cavity measures this intensity. Its signal is fed into a PID-controller*' which feeds back onto
the AOM power to stabilize the light intensity. This further stabilizes the frequency of the locked laser,
since the cavity frequency is dependent on the incident laser power [130].

The frequency-stabilized light is sent to the experiment table through an optical fiber. Acoustic
noise in the 20 m-long fiber alters its optical path length, thus modulating the phase of the beam
at the output, which results in a broadening of the laser linewidth, referred to as fiber noise. This
broadening is counteracted by fiber-noise cancellation (FNC) [131]. In short: an AOM before the fiber
shifts the beam’s frequency by faom. The beam experiences fiber noise, which produces additional
phase shifts i, (). A small portion of the light, reflected at the experiment-side facet of the fiber, is
sent back through the fiber and subsequently through the AOM. Here the beam is recombined with a
bit of light picked off before it goes through all that frequency shifting. The combined beams have a
beat at frequency 2(faom + d¢, /dt), which is detected by a photodiode. The beat signal is fed into
a home-built FNC-module. The module compares the beat with a stable reference signal with a set
frequency fis, and feeds back the error signal onto a voltage-controlled oscillator (vCO) that drives the
AOM. The AOM frequency faowm is thus actively modulated to ensure that 2(faom + dPn/dt) = frer.

3.1.2.2 Experiment table

All beams are routed onto the experiment table through optical fibers. Figure 3.8 gives a schematic
top-down overview of the optical setup on the experiment table. To make the following description
of orientations of the components in the setup less ambiguous, we refer to the cardinal directions
shown in the top left of the figure®*. In the center (in gray) is the vacuum chamber. The ion trap is
positioned in the center of the chamber with trap surface oriented vertically, out of the page in Figure
3.8. The normal of the trap surface points south-east from the trap, and the trap’s axial direction is
along the north-east direction. A pair of Helmholtz coils (not shown) are placed to the west and east
of the chamber, producing a magnetic field along the figure’s horizontal direction.

The Doppler cooling and repumping beams for both *°Ca™and 88Sr*are overlapped into a single
beam line with dielectric mirrors and PBSs. This joint line comes in from the south, and is thus aligned
at 45° with respect to the trap’s axial direction, and at 90° with respect to the quantization axis. The PI
beams of both species are overlapped and sent in from the south-west viewport, and graze across the
trap surface.

The beams that enable qubit control are first amplified by a tapered amplifier (TA). The TA output is
sent through a short fiber to clean the beam mode. A portion of the beam is split off and sent to a
photodiode, whose signal is used to stabilize the intensity of the beam through feedback on the TA
current. The beam is split into two arms, one of which is intended for global operations, and the other
for single-ion addressing. Each beam is sent through a double-pass AOM setup. These AOMs provide the
primary source of frequency control of the qubit beam within experimental sequences, further detailed
in Section 3.1.3. Each beam is subsequently directed through an AOM in single-pass configuration, a
short mode-cleaning fiber, and a set of lenses that expand the beam. The global °Ca™and 8Sr"beams
are overlapped and reach the trap from the north-east viewport, aligned with the trap’s axial axis.
The overlapped addressing beams approach through the south-east viewport, and pass through the
high-NA lens, which ideally focuses the beam down to a sub-micrometer waist size.

Ionic fluorescence is collected by the in-vacuum lenses, and can be observed from both the front
and back of the slotted trap. Front-side imaging with a CCD camera allows us to see the surface

21 SIMg60, SRS
22 Which coincidentally matches real-world cardinal directions quite closely
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Figure 3.8: Simplified schematic of the optical setup on the experiment table, with beam lines shown in red, and
paths for fluorescence detection in blue.

of the trap and how various beams reflect off of it. Imaging from the front is therefore used for
aiding in beam alignment®3. Fluorescence collected through the backside of the trap is used for
state detection. Fluorescence from “°Ca™and 8Sr"is separated into two paths with a dichroic mirror.
40Ca™ fluorescence is either sent to a PMT or a CCD camera by means of a mirror on a flip-mount. A
second PMT detects strontium fluorescence.

3.1.3 Experimental control

A schematic overview of the main hardware and software components that provide experimental
control** is shown in Figure 3.9. The experiment is centrally controlled from a PC, running Trapped Ion
Conrol Software (TtICS), a home-built program that provides connectivity to the various components of
the experiment and a user-interface for controlling them. A thorough overview of TrICS can be found
in the thesis of Daniel Heinrich [132].

23 Note 12 in Appendix e
24 Note 13 in Appendix e
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Figure 3.9: Schematic overview of the experimental control hardware

Most experimental parameters (AOM settings, trap drive power, etc.) require control that is not
sensitive to precise timing, as they do not change within experimental sequences. In contrast, a
few dedicated pieces of hardware are responsible for controlling parameters that must be updated
with sub-microsecond timing during experimental sequences. We will first discuss the quasi-static
experiment control, that remains unchanged during an experimental cycle.

The control PC has an I/O PCI card?>, which is controlled by TrIiCs. The card has a set of digital
outputs, which are used to communicate with devices in the lab. Digital signals include 8 address
bits, to isolate which device is being communicated with, and 16 data bits that specify device
settings. Connectivity to these devices is provided by a 50-wire ribbon cable?®, denoted as bus system
in Figure 3.9. The ribbon cable is separated into sections by repeater and splitter stations, which
galvanically isolate separate parts of the lab and refresh digital signals. Ribbon cables are attached
to the backplane of 19” racks, which house the devices that need to be controlled. The bus system

supports communication with Direct Digital Synthesisers (DDSs), DACs, and digital in and output cards.

In practice, almost without exception®’, the only devices connected to the bus system are DDSs, which
provide the RF signals for AOMs, and the trap drive. A lone DAC card drives a pressure controller, which
controls the cryostat’s liquid flow rate, and thus its temperature.

The aforementioned control of AOMs allows us to set frequencies and powers of lasers used in
experimental sequences. However, the bus system does not allow for precisely timed switching of
these laser parameters. Such switching within experimental sequences is achieved by a dedicated piece
of hardware, the pulse box [133]. The pulse box has TTL outputs and RF outputs, the latter of which
can be phase coherently switched in amplitude, frequency and phase. Pulses can be generated with a
time resolution of 10ns. Pulse timings are controlled by a built-in FPGA. Pulse sequences, designed
within the TrICS framework, are communicated to the pulse box’s FPGA through a dedicated sequence
generation and communication software [134] on the main control PC.

The RF pulses emitted by the pulse box are externally amplified and subsequently drive 4 specific
AOMs, namely the ones in double-pass configuration in the top right of Figure 3.8. These AOMs are
responsible for coherent switching of the qubit interaction beam, at 729 nm for °Ca™and 674 nm for
8GrT. In addition to simply switching these beams on and off, the frequency, phase, and amplitude of
these fields are regulated by the pulse box.

The TTL pulses emitted by the pulse box are connected to various devices: TTL signals enable or
interrupt the passage of RF signals going to the AOMs in double-pass configuration, thus switching the
beams on or off. TTL pulses are also used as a start and stop signal for a counter card?® which detects
PMT pulses. This allows us to register fluorescence rate within a specified detection window. Count
results are communicated back to the control PC through a dedicated PCI card.

NI-DAQmx-PCI-6534

Migration to an ethernet-based communication network has begun in our lab, but most of our devices still run on the ribbon-wire
bus

In the past, the bus system also controlled DACs, which provided a voltage to piezos attached to cavity mirrors, allowing us to
tune the frequencies of lasers locked to these cavities. The cavity locks have since been replaced by a wavemeter lock.
NI-DAQmx-PCI-6733
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Figure 3.10: Microscope image and electrode layout of the Berkeley trap. Dimensions are in micrometers.

The control PC has stand-alone software to handle the voltage output of the AWG, which provides
voltages to the trap’s DC electrodes (see Section 3.1.1.3). This software allows us to set static voltages
or, alternatively, supply the AWG with pre-computed voltage sequences. The AWG has a trigger-
input, allowing us to start these voltage sequences on-demand within experimental cycles using the
pulse box’s TTL outputs. Similarly, separate software provides control of the CCD camera, but can be
programmed to detect fluorescence within experimental cycles, initiated by TTL signals from the pulse
box.

3.2 "GOLDEN GATE’ SURFACE ION TRAP

This section provides an overview of the surface trap installed in the experimental setup. As shown
in the beginning of this chapter, in Figure 3.1, the experiment has seen the comings and goings of
multiple different traps. This section focuses on the most recent of these, the ‘Golden Gate” surface
ion trap. Before discussing that trap though, two previous traps used in the course of my Ph.D. work
deserve some attention as they have sourced some of the results presented in this thesis. A brief
description of those traps is given in the following sections.

3.2.1 Previous traps

3.2.1.1  ‘Berkeley’ trap

The ‘Berkeley’ trap, so named because it was designed, and processed at UC Berkeley in the group of
Hartmut Haffner, was installed in our setup as a platform to demonstrate the prospects of scalability in
quantum computation (as opposed to the previously installed traps, which merely demonstrated that
the apparatus could trap in cryogenic operation). The layout of the trap is shown in Figure 3.10, with a
microscope image on the left, and a schematic layout on the right. The trap is based on a gold-coated,
micro-structured silica substrate®. Careful inspection of the trap image reveals many regions of dark
spots, most pronounced on the mid-left. These are artifacts due to stress on the substrate during the
microstructuring procedure. They are below the surface, and do not affect the surface quality. More
about the trap’s fabrication, coating, and wire-bonding, which is nearly identical to the ‘Golden Gate’
trap, is covered in Section 3.2.33°.

The trap consisted of 10 pairs of DC electrodes, each 200 pm wide. The traces leading up to the
electrode are narrower than the electrodes to minimize capacitance between them, thus minimizing
electrical crosstalk. The dark area in the center of the trap in Figure 3.10 is the slot region, which
is 100 um wide. Flanking the trap slot are the central DC electrodes, which are 30 um wide. These
electrodes join up on the right side, thus share the same voltage. One strip further out are the RF
electrodes, which provide the trap’s RF confinement. The RF electrodes produce a field, whose potential

29 Fabricated by Translume
30 Note 14 in Appendix e
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Figure 3.11: Microscope image of the Sandia HOA trap surface [109], and schematic layouts corresponding to the
purple and blue dashed regions in the image. Dimensions are in micrometers.

saddle-point, which corresponds to the pseudopotential minimum, is 110 um above the surface of the
trap. All electrodes are separated by trenches, which are 10 pm wide and 30 pm deep.

The Berkeley trap was the first trap in our cryogenic apparatus that demonstrated coherent qubit
operations, on both ¥°Ca™and 8Sr*. The system was characterized in terms of coherence times and
trap heating rates. In fact, the trap boasted a respectably low axial heating rate of 2 phonons per
second at 1 MHz trap frequency. Entangling gates (MS gates, see Section 3.2.8) were performed on
#0Ca*, and manipulation of the ion position was demonstrated by precise control of the trap voltages.
Specifically, we did an in-depth study of ion crystal rotations, in which a sequence of voltages causes
two ionic qubits to switch positions, while maintaining their quantum coherence. This operation is the
focus of Chapter 5.

3.2.1.2  Sandia High Optical Access (HOA) trap

The Sandia HOA trap was a successor to the Berkeley trap, and was installed along with a new-and-
improved version of the cryostat. The trap was designed, manufactured, and packaged by Sandia
National Laboratories, as part of IARPA’s Multi-Qubit Coherent Operations (MQCO) collaboration.
The design goals include [109]

¢ Providing high optical access (hence the name) for laser beams and detection optics, on various
axes

* Having a high degree of control of local trapping potentials, such that multiple neighboring
trapping sites can be independently controlled

* The ability to split ion chains at electrode voltage that do not exceed the voltage supply limit or
electrode voltage breakdown limit

¢ Having a junction region to allow re-ordering of ion chains

An scanning electron microscope (SEM) image of the trap surface is shown in Figure 3.11. The
electrode layout of the dashed areas are shown alongside. The ‘quantum region” of the trap, denoted
by the purple dashed box, is slotted to provide optical access for beams perpendicular to the trap
plane, thus allowing single-ion addressing. The slot is 60 um wide. The electrode layout is conceptually
similar to the Berkeley design, with the notable difference that the segmented DC electrodes flank the
slotted region and are enclosed by the RF rails. The segmented DC electrodes are therefore relatively
closer to the ions, and provide finer control over local potentials. The RF rails produce a potential
whose saddle-point is 70 um above the surface of the trap.

Two junction regions at each end of the linear central region separate the trap into four arms. The
junction regions do not have a slot. The jagged electrode edges in the slit-to-no-slit transition and in
the junction minimize deviations in the curvature of the RF pseudopotential experienced by an ion
traversing these regions.
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Figure 3.12: (a) Image of the Golden Gate trap. (b) Portion of the electrode layout (c) Cross section, cutting
vertically through (a). Dimensions are in micrometers

The trap is wire-bonded onto a chip carrier, with a standardized 100-pin PGA footprint (see Section
3.1.1.3). This makes it easy to swap out traps3'. In our experiment we are no strangers to trap
replacement: Several versions of the Sandia HOA trap have been tested, with varying results, though
unfortunately mostly discouraging ones. Overall, the heating rates (see Section 2.3.4) were on the
order of several thousand phonons per second at typical trap parameters (at an axial common mode
frequency of ~ 1MHz). This far-exceeds desirable heating rates for high-fidelity quantum operations.
The mechanism that leads to high heating rates (which apparently is more prominent in cryogenic
operation) is as of yet not fully understood but is believed to be related to incomplete metal coverage
of the slit.

An additional technical difficulty was that the slotted region was too narrow for our 397 nm Doppler
cooling beam to pass through without notable scattering from the slot’s sidewalls. This made it difficult
to have an acceptable signal-to-noise ratio for state detection. A final technical difficulty was that we
never managed to co-trap two different ion species.

Our way forward was to return to the previously shown-to-work Berkeley trap, though with minor
modifications, in line with the design goals of the Sandia HOA trap. This successor trap, known as
the ‘Golden Gate’ trap, was used for most of the work described in this thesis and is discussed in the
following section.
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Figure 3.13: (a) Contour of the pseudopotential for #*Ca*tat an RF electrode voltage amplitude of 200 V, and a
40 MHz trap drive. The potential minimum is marked with a red cross. (b) Pseudopotential along
the radial direction perpendicular to the trap surface. At 200 V, the curvature around the potential
minimum, denoted by the dashed line, is 190 Vmm~2, corresponding to a 3.5 MHz radial motional
frequency. The trap depth is 90 meV.

3.2.2  Golden Gate trap overview

The credit of naming the ‘Golden Gate’ trap goes to Pavel Hrmo, and was so named for the following
reasons: 1) The traces leading up to the DC electrodes are reminiscent of the arches of the Golden Gate
Bridge3?, 2) the trap is coated in gold, 3) the trap is used to do quantum gates, and 4) it's an homage to
the group in Berkeley where we borrowed the design from, with a view of the Golden Gate bridge
from the lab. An image of the trap and its electrode layout are shown in Figure 3.12. The trap chip
dimensions are 9 x 4.5 x 0.5 mm?.

The trap has 27 pairs of DC electrodes. A central DC electrode is made up of two co-wired strips
(30 um) that flank a central slot. The central DC electrodes are enclosed within a pair of RF rails
(60 um). The DC electrodes are narrower than the Berkeley trap, (100 pm pitch), providing finer control
of trap potentials around the ion. Trenches between the electrodes are 10 pm wide and are designed to
be 50 um deep, though actual manufactured depth has some tolerance and might, according to the
manufacturer33, more realistically be around 40 pm. The slotted region is 100 pm wide, 70 um deep,
and the opening angle behind the slot towards the back side of the trap is 80°. These values were
chosen to reduce light scattering of the 397 nm beam, both on the front side and back side, while
retaining structural integrity of the chip. The 397 nm beam is used for fluorescence detection, which
requires a high signal-to-noise ratio for quick state detection.

Figure 3.13(a) shows a contour plot of the RF pseudopotential in the radial direction (see Eq. 2.12.
The potential is shown for ¥°Ca™, with a 40 MHz trap drive frequency and an RF voltage amplitude of
200V. These are typical parameters in our experiment, and result in radial motional frequencies of
3.5MHz. The RF null, the location where ions are intended to be trapped, is 110 pm above the surface
of the trap. The pseudopotential in the radial direction perpendicular to the trap surface is shown in
Figure 3.13(b), from which it can be seen that the trap depth, the energy required for an ion to escape,
is 90 meV. With the same trap voltages, a 8Sr"ion needs 41 meV to escape the trap.

3.2.3 Manufacturing

The trap chip is based on a fused-silica substrate. The electrode structure and slot are fabricated
with laser micro-machining. The surface was gold-coated in our in-house cleanroom facility in the

The process of switching out one trap on the trap PCB with another takes a matter of minutes. Though that is ignoring the
amount of time it takes to disassemble and the setup to reach the trap in the first place, and to reassemble it afterwards.

32 If you squint
33 Translume
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University of Innsbruck using evaporation deposition. During evaporation, the trap surface is tilted
at a 45° angle with respect to the evaporation flux. First, a 10nm layer of Titanium is applied as an
adhesion promoter, and secondly a 150 nm layer of gold is applied. This process was repeated four
times, twice on the top surface and twice on the bottom surface. Between the two top-side evaporation
runs, the trap chip is rotated 180° around the surface normal, though keeping the 45° with respect to
the evaporation flux. This ensures that all trench walls are coated, but keeps the bottom of the trenches
uncoated, thus avoiding electrical contact between neighboring electrodes3+.

The coated trap is glued3> to a trap carrier PCB. Electrode pads are wire-bonded to the traces on the
carrier PCB. The RF electrode had multiple wire-bonds This PCB has the same footprint as the Sandia
HOA trap package, and could therefore be installed in our setup without any further modifications to
the apparatus.

Shortly after installation, ¥°Ca™and #Sr*ions were stably trapped in the Golden Gate trap. In the
following sections, trapped ions are used to characterize the Golden Gate trap.

3.2.4 Potential calibration

Following the methods described in Section 2.3.1, a set of voltages are derived that control trapping
potentials, expanded in a basis of spherical harmonic multipoles. Tolerances in the fabrication of the
trap, limits in accuracy of potential simulations, and undesired stray charges influence how well these
sets of voltages produce the actual desired potentials. We use the methods of section 2.3.2 to calibrate
any possible discrepancy between set potentials and measured potentials, as given by Eq. 2.77.

The measured motional frequencies behave as expected according to the set potential: the multipoles
that intentionally influence motional frequencies lead to frequency changes that range within 5% of
the predicted value. Multipoles that should leave motional frequencies unaffected for the most part do
so. The exception is that the Y; ; term (see Eq. 2.72), which ideally should only produce a homogenous
field in the radial direction parallel to the trap surface, additionally induces splitting of the two radial
mode frequencies. The optimized calibration allows us to predict motional frequencies with less than
1% error.

3.2.5 Micromotion compensation

In this section, the techniques described in Section 2.3.3 are applied to minimize and characterize the
motion of an ion due to the ion trap’s RF field, micromotion. We use the methods of photon correlation,
CCD detection, and micromotion sideband spectroscopy. Photon correlation is the detection of the
arrival time of an ion’s fluorescence photons with respect to the phase of the RF drive. It can detect
a component of micromotion parallel to the Doppler cooling beam. CCD detection uses fluorescence
imaging to detect a shift in position of the ion when the trap drive power is changed. It detects
micromotion in the image plane. These two methods together are a quick method of compensation
and are used on a daily basis. Since the Doppler cooling beam in our setup does not lie in the image
plane, the two techniques are sensitive to micromotion along different axes, and are therefore suitable
together for compensation in both radial directions.

Figure 3.14(a) shows results of micromotion compensation using photon correlation. Histograms of
photon counts as function of detection time (in terms of the phase of the RF drive) are shown for two
applied electric fields, at 0.75V mm~! and 0.85V mm!. These fields are produced perpendicular to
the trap surface, by applying a set of voltages to the trap’s electrodes, as described in Section 2.3.1. In
the presence of excess micromotion, the fluorescence rate is measurably correlated with RF phase, as
seen in the left plot, emphasized by a sinusoidal fit. Correcting micromotion flattens this curve, as seen
in the right plot. We extract the amplitude from the sinusoidal fit for similar measurements over a
range of applied fields, and show the results in the lower plot. The amplitude has a minimum around
0.85Vmm~1.

Complementary to this method, we monitor the position of the ion using a CCD camera, whose
image plane is parallel to the trap surface. Applying a field parallel to the trap plane, in the radial

34 Note 15 in Appendix e
35 EPO-TEK H20E
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Figure 3.14: Results of micromotion compensation on the Golden Gate trap, using various techniques. (a) Photon
correlation: upper plots are histograms of ion fluorescence counts as function of RF phase, shown
for two field strengths perpendicular to the trap plane. The blue line is a sinusoidal fit. The lower
plot shows the amplitude of the fitted lines, for various field strengths. (b) Ion position as function of
field strength (parallel to the trap surface, in the radial direction) for two RF powers. (c) Excitation by
applying a pulse on a carrier transition (upper) and micromotion sideband (lower). The ratio of their
Rabi frequencies is used to calculate the micromotion index.

direction, displaces the ion. The amount of displacement depends on the power of the trap’s RF drive.

Figure 3.14(b) shows the ion displacement as function of the applied field, for two RF powers (where
the "high” power corresponds to a radial secular motional frequency of 3.5 MHz and the "low” power to
1.8 MHz). The ion position linearly changes with applied field, as can be seen by the fit lines. The value
of applied field where the two lines cross corresponds to a minimum in micromotion. Combining
the methods shown in Figure 3.14(a) and (b) allows us to compensate micromotion in both radial
directions to an accuracy of about £10 Vm~!.

A more accurate fine-tuning of micromotion is done by probing a micromotion sideband of one
of the ion’s 4S5y /, <+ 3Ds/; transitions. The ratio of coupling strengths of the micromotion sideband
and the carrier transition is used to determine the micromotion modulation index (Eq. 2.85). Figure
3.14(c) shows excitation of a carrier transition (top) and its motional sideband (bottom). The lines
are sinusoidal fits, of which the respective Rabi frequencies are determined to be Qc,r = 51.3(3) kHz
and Oy = 1.0(1) kHz. The modulation index is then = 0.037(6), corresponding to a micromotion
oscillation amplitude of about r\n ~ 4.3nm. This value indicates the amplitude of the component of
micromotion in the direction parallel to the beam used to probe these transitions, which in our case is
perpendicular to the trap plane.

In addition to the measurements shown in Figure 3.14(c) the micromotion modulation index is
measured using a beam that is parallel to the trap’s axial direction. Ideally, in a linear trap, ions should

experience no micromotion in this direction, thus should not have a detectable micromotion sideband.

In our setup, we measure a modulation index of 0.25 in the axial direction. This value is independent
of which DC fields are applied. This suggests there is a source that produces a homogeneous RF
field (as opposed to the harmonic RF field produced by the trap’s RF electrodes). We suspect that
the source of this field is a wire a few centimeters away from the trapping region that connects the
resonator coil to the trap PCB. Electric-field simulations indicate that, even with shielding provided by
the trap surface and the trap clamp, this wire can indeed produce a high enough field to account for
the measured axial micromotion modulation index. Note also that this axial micromotion can offset
the result of the photon correlation method for micromotion compensation. Since the Doppler cooling
beam wavevector has overlap with the axial direction, a minimization of correlation amplitude is not
necessarily reflected by the ion being at the RF null. Despite this, the photon correlation technique is
still useful as a coarse optimization, after which probing the micromotion sideband can be used for
fine-tuning.

For single species operation, this additional micromotion is most likely not a hindrance since the
added motion is the same for all ions. In mixed-species operation, however, the RF field unequally
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Figure 3.15: Heating rate measurements of the Golden Gate trap.

modulates the ions” axial position, which leads to anharmonic secular motion. This, in turn, can lead
to coupling between motional modes, mode heating, and motional decoherence. Future versions of
the setup will have this design flaw corrected.

3.2.6 Heating rates

Heating of an ion or group of ions’ secular modes, as discussed in Section 2.3.4, lead to a reduction in
fidelity of many quantum operations. In order to be able to characterize errors in ion trap experiments,
the trap’s heating rates must be measured. In this section, heating rate measurements of the Golden
Gate trap are discussed.

Figure 3.15 displays heating rate results of the Golden Gate trap. ‘Typical’ trapping parameters
in our setup correspond to an axial common mode frequency of 1.06 MHz and radial frequencies of
3.3MHz and 3.6 MHz parallel and perpendicular to the trap plane. Most results in this thesis use
similar motional frequencies, the exception being the results in Chapter 6, in which experiments are
performed at an axial common mode frequency of 0.55 MHz. Figure 3.15 shows heating rates 7 of the
axial mode at various mode frequencies w, measured using a single “’Ca*ion, using the sideband
thermometry technique described in Section 2.3.4. A heating rate of approximately 28 phonons per
second is measured at 1.06 MHz, and around 100 phonons per second at 0.55MHz.

A commonly used model for mode heating in surface traps poses that the heating rate is inversely
proportional to the mode frequency w and proportional to the spectral density of the electric field
noise S(w). The measured heating rate as function of mode frequency can therefore be used to glean
information about the electric field noise. For example, many electrical systems have noise spectral
densities that follow a S & 1/w frequency scaling [93], which would be reflected by a w2 scaling in
the heating rate. The dashed line shows a least-squares fit through the data using a power law model,
il &« w™*, from which a frequency scaling factor of « = 2.0(3) is determined. This scaling is consistent
with basic surface noise models [29].

The measurements shown in Figure 3.15 were taken in May 2022, at which point the trap was in
operation for about three-and-a-half years. In early 2021 and earlier, heating rates were measured
on the order of 20 phonons per second. The increase in heating rate over time may be attributed to
an increased amount of contaminants on the surface of the trap [36, 135]. Nevertheless, the heating
rate of the Golden Gate trap is in an acceptable range for many demonstrative quantum computation
sequences. We have also measured heating rates of motional modes in the radial directions, at
frequencies between 3 and 4 MHz, and find rates between 50 and 100 phonons per second. The works
in this thesis make use of the axial motional modes, so radial heating is less consequential. The
measured radial heating rates are therefore also within an acceptable range.

3.2.7 Coherence times

A defining property of a qubit is its coherence, which is effectively a measure of how well-defined the
phase-relation between the two qubit states is. Imprecision in experimental properties like magnetic
field strength and laser frequency cause this phase-relation, thus the coherence, to decay over time.
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Figure 3.16: Coherence time measurements on the Golden Gate trap, inferred from Ramsey contrast. Coherence
times are shown between various states, including (a)-(b) two optical transitions, (c) an RF transition,
and (d) a motional mode transition. Light blue lines are exponential fits, from which indicated T,
times are derived. The teal lines are a guide to the eye linking smoothed contrast data in the optical
qubit.

In this section, we display results of coherence time measurements, using the Ramsey measurement
technique covered in Section 2.3.5.

Firstly, a ‘standard” Ramsey measurement, as in Eq. 2.96, is executed. Unfortunately, our system
suffers from slow magnetic field drifts; individual measurements (i.e. 50 repetitions of an experimental
cycle) can provide results with high contrast, suggesting that during this set of cycles the magnetic
field is stable. However, a full Ramsey scan is typically done with a sequence of such measurements,
over a range of Ramsey phases, to get a full Ramsey fringe as in Figure 2.11. The magnetic field drifts
in our setup are large enough that regardless of which levels are used as qubits, a Ramsey time fy,i; of
about 4ms results in a measured excitation as function of Ramsey phase with high contrast, but no
clear sinusiodal behavior. Since such measurements are difficult to analyze unambiguously, we do not
display these results. However, we can conclude that we maintain a near unity coherence at around
1ms, but cannot draw definitive conclusions about coherence from these measurements after a few
milliseconds.

Instead, we add an echo pulse to the Ramsey sequences, also described in Section 2.3.5. For these
sequences, one does not need to scan the laser phase of the final Ramsey pulse, because linear
phase drifts due to incorrect laser frequency settings are canceled out by the spin-echo. Coherence
can therefore be extracted from the excitation contrast for Ramsey sequences with the laser phases
¢ = 0 and ¢ = 7. Figure 3.16 displays results of Ramsey measurements performed on *°Ca™, with
spin-echo, where we probe the coherence of various levels: From left to right, we probe two optical
transitions, (451,2(—1/2) < 3Ds5,,(—5/2) and 4S;1,,(—1/2) <> 3Ds;,(—1/2)), the ground state

(4S1/2(—1/2) > 451,5(+1/2)) and check the coherence of the ion’s motion (|n = 0), <> [n =1),).

In the plots in Figure 3.16, the blue dots are measured contrast and the blue lines are exponential
fits through the data3®, from which the coherence time T, is extracted, using the assumption that
the measured contrast follows exp(—twait/ T2). The large statistical spread in the measured data is
mostly due to quantum projection noise, as each data point was obtained with 50 repetitions of an
experimental cycle (which in hindsight should have been measured more thoroughly).

The T, times of both optical qubits and the ground state qubit all exceed 100 ms. The optical qubits
both exhibit a feature of coherence recovery at around 50 ms, after an initial drop around 25 ms, which
can be seen with the teal guide-to-the-eye that connects smoothed measured data in Figure 3.16. Since

Different noise models lead to different decay functions in Ramsey contrast. Our data likely suffers from various types of noise,
and cannot be described by a simple model. The exponential decay model provides a good indication of coherence time but is
not intended as an exact representation of the decoherence mechanism.
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Figure 3.17: Experimental realization of a two-ion Melmer-Serensen gate on the Golden Gate trap. (a) State

population as function of the MS-gate pulse duration. The Bell state —=(|00) +i|11)) is generated at

V2
a pulse duration indicated by the purple bar, confirmed by (b) a parity measurement, in which an

analysis pulse with varying phase prepares even or odd states.

the ground state qubit does not contain this feature, this points to a source of coherent noise in the
laser frequency, likely related to the 50 Hz electrical line cycle.

The optical qubit with upper state 3Ds5,,(—5/2) is five times more sensitive to magnetic field
fluctuations than 3Ds,,(—1/2) (see Eq. 2.66). If magnetic field noise was the dominant source of noise,
then the T, times of the two optical qubits would differ by a factor of five. Since this is not the case (we
measure a factor of about 1.2), the coherence time seems to be limited by laser phase noise. One would
then expect a significant improvement when probing the coherence time of the ground state qubit,
which shares the same magnetic field sensitivity as the 45, /,(—1/2) <> 3D5/,(—5/2) transition, but is
insensitive to laser phase noise. However, the measured T, time of the ground state qubit, 116(8) ms
does not reflect this expectation. We suspect, instead, that motional heating affects the outcome of
the ground state qubit coherence measurement: The Ramsey sequence for the ground state qubit,
including the spin-echo, requires a total of seven pulses, compared to the three required for the optical
qubit. Motional heating during the wait time reduces the success of full population transfer that these
pulses are expected to make, which makes the outcome of sequences with more pulses more sensitive
to mode heating.

Finally, the coherence time of an ion’s motional mode (using the axial mode, at 1.06 MHz) is
measured to be 17 ms. The two main sources that lead to motional decoherence are motional heating
and noise in the motional frequency due to undesired changes in the trap’s confining potential. An
ion at an axial frequency of 1.06 MHz has a heating rate of 28 phonons per second, which corresponds
to a theoretical motional T, time of 36 ms. The measured T, time is thus dominated by instabilities in
the confining potential, likely caused by voltage fluctuations on the trap surface.

The duration of many of the sequences in the works detailed in this thesis are on the order of a
millisecond or less. Decoherence, even when no spin-echo sequences are used, represent only a minor
source of error in such sequences.

3.2.8 Gate performance

We characterize the setup’s ability to generate qubit entanglement by applying the Molmer-Serensen
(Ms) gate, described in Section 2.3.6. Figure 3.17(a) shows an experimental realization of an Ms-gate
pulse applied to two trapped ions in the Golden Gate trap. Individual data points are the measured
population of the states |00), |11) and the combined population of the states |01) and |10). The lines
are simulated results, showing the excitation development of an ideal gate pulse.

At a pulse duration of ¢ = 145 ps, indicated in Figure 3.17(a) with the purple bar, the applied pulse
produces the desired populations of an entangled state, \% (]00) 4+1i]11)). A gate fidelity of 97.3(5)%

is obtained from gate population and parity scans. An example of a parity scan is shown in Figure
3.17(b). A portion of the error in gate fidelity comes from errors in state preparation and measurement



3.2 ‘GOLDEN GATE’ SURFACE ION TRAP

(SPAM). The gate error of the Ms-gate alone, without SPAM, can be deduced by measuring gate fidelity
for multiple repeated applications of the gate, and determining the overall per-gate drop in fidelity.
Only fidelities of odd numbers of gates are accounted for, since even numbers undo the entangling
operation. We have repeated the gate up to 9 times, and determine a gate fidelity of 98.6(1)%. The
main source of error is resonant excitation of the carrier due to the 729 nm diode laser’s non-negligible
noise floor. Depending on the intended gate application, more robust techniques of analyzing gate
performance may be desirable [136].
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CLASSICAL ION DYNAMICS IN AN RF PAUL TRAP

Assume that a penguin is a circular cylinder...
— Fundamentals of Physics, Halliday et al.

In this chapter, we will discuss classical motion of ions trapped in a Paul trap. Here, the term
“classical” is used to emphasize that we take into consideration the Newtonian mechanics of charged
particles, whose energies are high enough such that quantum mechanics can be neglected. We
investigate classical motion by executing numerical simulations of ions in time-dependent fields. This
investigation leads us to a discussion of an often overlooked —but in some cases dominant— effect
known as RF heating.

4.1 MOTIVATION

Our motivation for studying ion motion stems from experimental difficulties in utilizing surface traps
for scalable quantum computation: Surface traps intrinsically have a low energy barrier for ions to
escape, compared with macroscopic 3D traps and are therefore more susceptible to ion loss. Ion loss
should be minimized, as such events lead to tedious ion reloading times, and constitute a decrease in
computational speed.

On the surface’, it would seem that keeping ions trapped should not pose any difficulty: Ions are
Doppler cooled to energies in the neV range, whereas trap depths of typical surface traps are typically
tens or hundreds of meV. In the absence of Doppler cooling, an ion might gain energy at rates on the
order of 1neVs~1, due to electric field noise emanating from the trap surface (see Section 3.2.6). At
this rate, one would thus expect uncooled lifetimes of at least tens of minutes. During experimental
sequences, Doppler cooling is never off for more than a few tens of milliseconds. Anomalous heating
alone therefore would not likely lead to ion expulsion. A more dramatic change of energy can occur if
a particle in the background gas collides with an ion. However, some back-of-the-envelope ballistic
collision calculations suggest that it’s nearly impossible® to have a collision that leads to an ion energy
above 40 meV. From this we can naively conclude that as long as Doppler cooling isn’t interrupted for
too long of a period of time, ion loss should not be a problem, even for surface traps.

Unfortunately, ion loss is a persistent problem for many ion traps with low escape barriers, and the
cause is not fully understood. Throughout the many iterations of traps in our setup, ion lifetimes have
varied from days to minutes to seconds, without a clear indication of which experimental parameters
lead to these changes in lifetime. Ion lifetimes (and loading times) in mixed-species operation was
particularly perplexing: in one trap (see Section 3.2.1.2) we were able to stably trap a chain of °Ca™
for several hours, stably trap a chain of 88Sr™ for several hours, but never managed to keep a mixture
of Ca and Sr in the trap, let alone crystallize it. If a trap can hold multiple specimens of either species,
what process is responsible for hindering loading of a mixed-species crystal?

There is much to be learned about the processes involved in ion loss and loading. This prompted
us to study the dynamics of trapped ions in simulation. Such simulations enable the investigation of
many aspects of trapped ion stability, for example the effects of asymmetry in the trapping potential,
parametric resonances, varying ion numbers, and mixed species interaction. Our classical ion dynamics
investigations have helped us determine, understand, and mitigate the main source of heating that
limits mixed-species loading rates and trapping lifetimes.

The treatment of ion dynamics is usually massively simplified by assuming that an ion’s motion
ignores the trap’s time-dependent RF field and instead is governed by an effective static potential. We

Pun intended
Granted, my envelope uses a background gas of only hydrogen, with an energy distribution at cryogenic temperatures (30 K).
Still, this statement easily holds for room temperature setups
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begin this chapter with a digression, giving word of warning that this simplification is not always
justified. The remainder of this chapter highlights this notion by investigating one example of this,
a phenomenon known as RF heating. In this chapter, RF heating is studied through numerical ion
trajectory simulations, is analytically modeled, and experimentally observed.

4.2 BEYOND THE PSEUDOPOTENTIAL APPROXIMATION

It is ubiquitous among works on quantum computation with trapped ions [137] to introduce the core
concepts of ion trapping by introducing the pseudopotential — a time-averaged approximation of the
driving RF electric field potential of a Paul trap. This pseudopotential, often assumed to be harmonic, is
a useful approximation as it can be used to describe the motion of an ion without needing to take into
account the infinite terms of the solution of the Mathieu equations (see Section 2.1.1). The unperturbed
motion of an ion within a harmonic pseudopotential is sinusoidal in time and contains no frequency
component at the driving RF frequency (known as micromotion). This sinusoidal motion is known as
secular motion.

The pseudopotential approximation is an immensely useful simplification of the electric field
potential, since it allows us to easily describe equilibrium positions and motional modes of ions. This
in turn, hugely simplifies the treatment of atom-light interaction, which constitutes the foundation of
trapped-ion quantum computation. The interactions discussed Section 2.2.6, indeed, assume ions are
trapped in a static confining potential. It is therefore a lucky break that one needn’t worry about any
ion motion with frequencies higher than the secular frequencies.

However, the influence of the RF field cannot always be neglected. The simulations used in this
section cover regimes where the dynamics of ions do not obey the pseudopotential approximation. We
note some phenomena that lead to a deviation from this approximation:

-Doppler cooling-

The interaction of an ion and a Doppler cooling beam is fundamentally dependent on the ion’s
velocity (see Eq. 4.24). In typical ion trap operation the amplitude of an ion’s periodic motion is
dominated by its secular motion3, which makes it tempting to dismiss the effect of micromotion.
However, an ion’s velocity amplitude due to the RF drive is similar to its secular velocity amplitude.
Figure 4.1(a) demonstrates the notable difference between the velocity distribution of an ion if
simulated in a pseudopotential versus a time-dependent potential generated by an RF drive. Since
the functionality of Doppler cooling depends on velocity, it is evident that micromotion cannot be
neglected if one includes Doppler cooling in simulations. In fact Bliimel et al. [138] note that with a
sufficient amount of micromotion, a Doppler cooling beam can add energy to ions.

-Coulomb interaction-

A second reason that the pseudopotential approximation might fail to adequately describe ion
motion is an interaction of forces due to the Coulomb potential between multiple ions and the time-
dependent RF potential. When ions are far from the motional ground state (several hundreds of meV)
this interaction leads to an aperiodic energy exchange between the driving RF field and the ions. This
energy exchange, termed RF heating, is the focus of the majority of this Chapter and will be further
defined, described, modeled and measured in Section 4.3. For now, we ask for the reader’s patience for
our vagueness in the usage of terms such as “RF heating” and “energy” in the following paragraph.

It is worth mentioning that it is not obvious that the RF potential should induce energy changes,
even for a case as simple as two trapped ions and is therefore often overlooked. It has previously
been recognized [138] that RF heating can play a dominant role in energy exchange in few-ion
systems, though the rate at which RF heating occurs depends on the ion’s energy. This heating rate,
as a function of ion energy, is shown in Figure 4.1(b). The data in this plot are obtained using ion
trajectory simulations, detailed in the following section. For comparison, using a pseudopotential in
the simulation does not show any heating, demonstrating that, indeed, the pseudopotential fails to
encompass a dominant energy exchange mechanism. Despite this, the dependence of ions” motion on

For typical trapping parameters, the ratio of amplitudes of micromotion agr to secular motion 4. is closely related to the
ratio of the secular frequency w to the trap drive frequency Qgg and is also similar to the Mathieu g-parameter: amm /asec ~

V8w /Qrp = q/2, see Section 2.1.1.
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the RF potential for systems with low numbers of particles is often assumed to be negligible [65, 130].
This discrepancy suggests that a more solid foundation on ion dynamics within an RF potential is
required.

@ 406 (b)
[ Pseudopotential = * O Pseudopotential
o ] RFdrive ~ % RFdrive
£ > x x
a T 40}
o 0.04 ¢ o ®
o "
>N —
£ o
3 & * e
2 2
2 0.02] o 207 o
& £
()
& x .,
0 ;
0 0.5 1 1.5 0 5 10 15 20 25 30
lon velocity Mean ion displacement (ztm)

Figure 4.1: Examples where the pseudopotential does not accurately portray ion dynamics. (a) The velocity
distribution and (b) the energy change rate of ions simulated in a pseudopotential versus ions in a
time-dependent RF drive. Velocities in (a) are scaled with respect to the amplitude in velocity of the
ion’s secular motion. The simulation parameters, definitions, and results in (b) are similar to those in
Ref [138].

4.3 RF HEATING OF NON-CRYSTALLIZED TRAPPED IONS

In this section, we focus our attention onto the investigation of RF heating. The content of this section
is adapted from the publication RF-induced heating dynamics of non-crystallized trapped ions [139].
We start with an introduction where terms used in the previous section finally get some well deserved
definition and motivational context.

4.3.1  RF heating: an overview

In trapped-ion based quantum computation, qubits are assumed to be well-localized, separated,
trapped ions that share common motional modes due to their Coulomb interaction. A collection of
such ions represents a register of qubits, and is characterized by a regular and predictable spatial
structure, known as a Coulomb crystal*. Quantum computation demands that ions remain in their
crystal state.

A prominent event that disturbs the crystal structure is a collision with a particle from the residual
background gas [140]. Such a collision can transfer enough energy to ions such that the crystal structure
is destroyed. The ions undergo a transition described as melting, to a phase colloquially named an
ion cloud [138, 141]. The defining feature of a cloud is that ions do not have unique average positions,
unlike in a crystal. By this definition, as few as two ions can constitute an ion cloud, despite that the
term cloud often carries the connotation of involving an ensemble of ions. Most of the discussion in
this section involves a two-ion cloud.

Melted ions are subjected to a change in energy that is not present in the crystal phase: Energy can
be transferred to the ions from the RF field. This process is known as RF heating, and has been alluded
to in the previous section. RF heating occurs when the time-dependent Coulomb force between ions
in an RF field is irregular®. It is the dominant source of energy gain in ion clouds. RF heating has
previously been studied in the context of interactions of ions with ultra-cold buffer gasses [142, 143]

4 Though some would argue that to be called a crystal it should exhibit periodicity, which is not the case.
5 Note 16 in Appendix e
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and ion ensembles [144-149], but has not been considered in the context of crystals with low ion
number, as, for example, registers of ionic qubits.

Ions in a cloud are no longer suitable to be used as qubits for quantum computation, and need to
be efficiently returned to the crystal state, a process known as recrystallization. While laser cooling
techniques can be employed to remove energy from the ions, the opposing increase in energy due
to RF heating hinders or even prevents recrystallization. In this section, the properties of RF heating
are investigated. As the motion of melted ions in an RF field is chaotic® it is inconceivable to attain
generalized analytic descriptions of the ion motion [138, 150, 151]. However, with our simulation
we can numerically analyze dynamics of melted ions, allowing us to focus on the energy exchange
mechanism of RF heating in detail.

The investigation of RF heating is carried out in the following steps:

1. Numerical simulations: a particle motion simulator is used to track the position of ions in an RF
field. The simulation results show that RF heating can be described by discrete events, ion-ion
collisions.

2. Simplified model: Results from the numerical simulations are used to develop approximate
analytical expressions of RF heating, based on models for ion-ion collisions. These expressions are
the basis for a simplified simulation of ion cloud energy dynamics, that avoids the computational
overhead involved in tracking the motion of all ions in an RF field.

3. Experimental validation: We experimentally produce controlled melting events and estimate
cloud energy by monitoring changes in the cloud’s fluorescence. These results are compared to
results from the full numerical and simplified simulations

Before detailing on this investigation, a more detailed description of ion clouds and RF heating is
required, and is provided in the following section.

4.3.2 lon clouds

We are unaware of literature in which the term “ion cloud” is clearly defined. However, from an
intuitive point of view, the fundamental difference between an ion crystal and a cloud is well-known.
In the crystal phase, ions have a uniquely defined average position, whereas in the cloud phase, all
ions share an average position, the center of the trap. Viewing the fluorescence of trapped ions on a
camera makes this distinction abundantly obvious: one either sees a grid of points, or just one elliptical
blur. Even in the case of two trapped ions, one cannot simply visually distinguish two melted ions.
For most of the work presented here, a more thorough definition of ion cloud is not necessary. The
intuitive understanding of what it means for ions to be melted is sufficient. Still, it is worth mentioning
two cases of ambiguity:

Firstly, it is generally agreed upon that a single trapped ion cannot form an ion cloud. This holds
even at high energy, despite that one would observe a blur on a camera. Unlike in an ion cloud, a hot
ion’s motion is periodic, and there is no phase transition between a ground-state cooled ion” and a hot
one.

Secondly, the distinction between cloud and crystal is not obvious in the energy regime correspond-
ing to the phase transition between the two. For example, consider a two-ion crystal that due to a
background-gas collision has gained some energy — just enough that the two ions can potentially
swap positions [140]. In the absence of laser cooling, the two ions mostly remain in unique positions,
but occasionally switch positions. One cannot claim that ions have unique average positions, thus
cannot be considered crystallized. On the other hand, a camera readout would still suggest two distinct
regions of increased fluorescence, not at all like a cloud. In Ref. [138], this energy range is dubbed the
“quasi-periodic” regime, which separates the crystal and chaotic phases. This regime represents an
area of hysteresis [152] between periodicity® and chaos: a crystal that heats up into this energy range

6 Note 17 in Appendix e
7 Of course, a single cold ion is also not described as being “crystallized.”
8 Or regularilty, at the very least
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can remain crystallized, while a cloud that cools down into this range can remain melted. Overall, the
quasi-periodic range is a gray area, both from a semantic and physical point of view.

Despite the lack of precision in qualitatively defining an energy that separates the crystal and cloud
phase, we can analytically estimate this energy: the formation of a cloud is expected when the energy
associated with ion motion (i.e., its kinetic energy) is much larger than an ions Coulomb energy. The
ratio of these energies is known as the Coulomb coupling constant, I', and is usually written as [145]

_ 1 ¢
747‘[60 awskBT

(4.1)

with kpT the ion’s thermal energy, 4 the ions’ charge, and

4 1/3
Aws = (37‘[[)) (4-2)

the Wigner-Seitz radius. Here, p is the particle density. The density is ill-defined for low particle
numbers. Previous works [145, 153, 154] have found the transition from crystal to cloud to occur for a

coupling constant between I' = 150 and 200, but note that this is valid for large ion numbers (> 50).

For low ion numbers, where a4, is approximated to be the average distance between neighboring ions
d, the crystal-cloud transition occurs® in the range of I' ~ 0.5, which suggests that the mean energy
per ion required to “break” an ion crystal is much higher for small crystals.

The separation between two ions aligned along the RF-free axis is given by

7 3
d= (2ne0mw§> ’ 43)

with m the ion’s mass and w, the axial motional frequency. The thermal energy k3T in Eq. 4.1 can be
defined in terms of the ion’s kinetic energy (1/2)m (v?) ~ (3/2)kgT, where the mean square-velocity
(v?) includes the contribution from the RF field. The mean velocity can be derived using the equation
for an ion’s position () given in Eq. 2.6 of Section 2.1, where we introduced the ion’s secular
motional amplitude a;, and the Mathieu g-parameters, gy, in three directions k € {x,y,z}. The average
velocity can be approximated [91] as

612602 a2q2(02 + wZ)
— li - 2 k™ k kk RF k . .
< I T/ dt ~ - ( 2 T 16 4-4)

Combining and rearranging Eqs. 4.1, 4.3, and 4.4, allows us to attain an expression for the oscillation
amplitudes at the melting phase transition for a two-ion crystal:

27/6
ay ~

(et ) w9
VI 86+ (wf - Ofe) \V2eomT

Plugging in ‘typical’ trap parameters (*°Ca™, w {xy,2)/ (27) = {3,3,1} MHz, Qgg/(27) = 35 MHz),
we find the crystal-cloud transition, I' = 0.5 to correspond to average oscillation amplitudes of 8 pm
in the axial direction and 2 pm in the radial directions. This is comparable to the ion-ion separation,
Aws = 5.6 um™

9 This is based on our own simulations. I am unaware of a literature value.
10 Note 18 in Appendix e
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4.3.3 Heating in time-dependent potentials

As previously described, RF heating is an energy exchange that takes place due to interaction of the
RF field and ions” Coulomb interaction. Here we provide a qualitative description of the physical
process involved in this energy exchange. For this, we now (finally) define energy and energy exchange.

At any moment in time, the energy Eio: of a set of trapped ions is given by the sum of their kinetic
energies Vi, and potential energies. The sources of potential energy are the trap’s DC field potential
Vb, the RF field potential Vip, and the Coulomb potential V(-o. The total energy at any point in time
t is thus given by:

S - 1 S
Ewot = Y, |9Vbc (%) + qVirro (%) cos(Qrpt) + Viin (vi) + 5 Y Veou( i, 7)) (4.6)
i iZi

for ions (indexed i) with positions 7; and velocities v;, and with charge 4. Vrg is the amplitude of the
RF potential, and Qgr its frequency.

In the context of describing an ion’s energy change over time, also known as ion heating, this total
energy is not very helpful: Ions experience driven motion due to the time-dependent RF potential
VRE, so their energy is constantly changing. This affects all components of Eq. 4.6, not just the Vg
term, since the positions 7; and velocities v; are driven by the RF field. It is therefore convenient
to separate the motion of trapped ions into two distinct timescales: micromotion which describes
the oscillation synchronous with the RF field, and secular motion, which describes the motion in an
effective static potential, the pseudopotential. The total energy can likewise be separated into the energies
corresponding to these two types of motion, as

Etot = ERp + Esec (4.7)

where Egp is the RF component of energy, and Ese. the secular component. When we refer to energy
changes, heating and cooling, of trapped ions, we imply changes in secular energy, Esec.
The secular energy is given by:

Esec = Z qVDC (?j(SEC)) =+ qVi,ps (?j(SEC)r t)+ (4'8)
1 S S
Vkin(vfseC)) +t5 Y. VCoul(rl‘(seC)/r]('seC))] (4-9)
J#

which looks similar to the total energy, but full ion motion is replaced by secular position and velocity,

—(sec) (sec)

7,77 and v;7. The time-dependent RF potential is replaced by the pseudopotential, given by:

2
‘/irps(71(sec)) = m VVRF,0(7,(S€C>)‘ . (4.10)

In the crystal phase, the secular motion can simply be expressed as normal modes of motion, with
distinct frequencies, as detailed in Section 2.1.4. Obtaining the secular energy analytically is then
straightforward, as the ion’s motion contains a limited number of sinusoidal contributions and can
be described and analyzed in the pseudopotential approximation. The RF energy does not couple to
the secular energy, so, in the absence of other external influences (e.g. laser cooling, electrode surface
noise, etc.), secular energy is conserved in the crystal phase.

If a collection of crystallized ions melts, ions experience aperiodic motion due to irregular ion-ion
Coulomb interactions. The frequency spectra corresponding to the secular motion and micromotion
broaden and overlap due to this aperiodic motion. This allows energy from micromotion Egr to be
transferred to the secular energy Esec. RF heating™ is this energy exchange between secular and
RF energy, mediated through non-periodic Coulomb interaction. Secular energy is, in this case, not
conserved.

11 Note 19 in Appendix e
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Figure 4.2: Schematic representation of two ions’ secular energy change due to Coulomb interaction in an RF
field. While following a trajectory governed by Coulomb repulsion, ions additionally experience a
force from the RF field, which is unequal due to the field’s position dependence. In this example, the
RF phase is such that during the moments of increased Coulomb interaction, the relative RF field
is aligned with the direction of motion, both during the approach and withdrawal of the two ions.
This leads to an increase of AW in motional energy after the collision. On the right, the filled circle
represents the position of ion 1 as it increases and decreases in the Coulomb potential with the aid of
the RF force, whereas the dotted circle is the position if no RF is applied.

The mechanism of energy exchange can be outlined with a simple one-dimensional model, shown in
Figure 4.2. In a static potential, two ions approach each other, experiencing opposing Coulomb forces,
and repel, as denoted by the dashed lines. In an oscillating potential, ions deviate approximately
sinusoidally (solid lines) from this path. Since the amplitude of the RF field is dependent on the
position in the trap, the two ions experience different forces from the RF field. In the example in Figure
4.2, directly before the moment of closest proximity, the difference in RF force reduces the distance
between the ions, compared to the distance if no RF field was applied. The ions in this example
therefore have more Coulomb energy at small distances than they would have in a static potential
(this difference is denoted by 1/2AW). As the ions begin to repel, the RF field has switched sign, and
now the difference in RF force aids in separating the ions. The added velocity that the ions gain from
this force, in addition to the now transferred extra Coulomb energy, contribute to a total energy of
AW added to Egec. This process would remove energy from Ege if the phase of the RF field had been
shifted by 7.

The schematic in Figure 4.2 provides a qualitative description of the mechanism of energy transfer. In
practice, such “head-on” collisions do not occur in three dimensions, and the RF phase will generally
not line up with the Coulomb force as schematically presented. Still, this schematic description
gives a qualitative intuition of how the RF field induces energy change when ions experience a
time-dependent Coulomb interaction. In the following sections, a more quantitative description of RF
heating is provided, by analyzing simulations of the trajectories of ions in a time-dependent trapping
potential. First though, an overview of how these simulations work is provided.
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4.4 SIMULATION OVERVIEW

The simulation is a numerical integration of the motion of ions (indexed i), with mass m;, at positions
rix(t) and velocities v; ;(t), under the influence of a total force Pl.(kT). The index k denotes the Cartesian
direction, k = {x,y,z}. The classical equations of motion that need to be solved are then

E (0 (), 7(1), 1)

Fialt) = R (411)

where the vector 7 denotes the set of ;. for all i and k. The energy regimes covered in this section,
pertaining to non-crystallized ions, are more than five orders of magnitude higher than that of motional
quanta, so a classical approach is justified.

Simulations of ion dynamics have been carried out with Matlab, using a built-in ordinary differential
equation (ODE) solver and is publicly available [155]. The Matlab ODE solvers find numerical solutions
for first order initial value differential equations of the form

r=f(F(t)1), (4.12)

where 7(t) is a set of time-dependent parameters. This solver solves only first-order differential
equations (DEs). The set of second-order equations of motion, Eq. 4.11, must be expanded into a set of
first-order equations. This is done by introducing the substitution v; , = #; . We thus solve the set of
equations

Fig(t) = vix(t) (4.13)

Fl(,}?) (vi,k/ ?<t>/ t)

O (t) = iy

(4.14)

For three dimensions and N ions, a system of 6N differential equations are numerically solved. The
solver provides a list of times {t,} and parameters {r;(t:),v;(ty)}, for a set of initial parameters
{rix(to),vix(to)}. The returned times do not necessarily coincide with time-steps used within the
solver. Therefore, returned parameters are interpolated from the internally calculated parameters.

4.4.1  Contributing forces

There are four contributing forces that are included in the simulation:
* The force from the static DC electric field generated by the trap electrodes
* The time-dependent force from the RF electric field generated by the trap electrodes.
¢ The Coulomb force between ions
¢ Interaction with the Doppler cooling beam

The implementation of these forces is discussed below.

-DC electric field-
The force on an ion with charge g in a static potential Vpc is given by

pif]?Q = —qVVnhc. (4.15)

We determine the position dependent VVpc analytically, using the description of the DC potential
discussed in Section 2.3.1, in which the full DC potential defined as a linear combination of potentials
in a spherical harmonic basis, Vpc = Y, V1, Y, Where v}, is a scaling coefficient'*. For most

It’s difficult to assign a more constructive name than ‘scaling coefficient’ for v;,, since its dimension, and thus physical
interpretation, depends on the order I, as [v] = V/m!. For I = 1, this term represents the electric field strength, in Vm~'. For
I = 2, it is the magnitude of the field curvature, in Vm2



13 Ordinarily, one would use v

4.4 SIMULATION OVERVIEW

of the simulations described in this thesis, two components from this basis are used: the primary
‘end-cap’-type DC potential

Yoo =222 — 2 — 7, (4.16)
and a potential that lifts degeneracy in the radial direction,

Yoo =2 -y (4.17)

Here, z is chosen to be the direction along the axial trap axis. The corresponding electric fields
{Ex/ Ey/ Ez}l,n = —vl,nVYl,n are then

Eyp0 = 2x12p, Ey20 = 2yvap, E.20 = —4zv2p

Exp2 = —2x17p, Eyo2 = 2yvap, E;pp =0. (4.18)

Static homogeneous fields, given by the terms Y; _; 1, can be included as

Eyp,-1=-v1,-1, E;10 = —V10, Ex11=—v11, (4.19)

though are generally kept at zero. Such terms can be included to investigate the effects of excess
micromotion caused by uncompensated stray charges (see Section 2.3.3).

To summarize: the types and magnitudes of field potentials are selected by choosing values of
V. At each time-step in the simulation, a force on each ion i, in direction k is calculated using
Fix = i Y10 VinExn, where all values of Ey;, are determined analytically. The solver includes
expressions for electric fields of all spherical harmonic potentials up until the I = 4% degree.

-RF electric field-
The force on an ion due to the trap’s RF potential Vg is

FRY = gV, (4:20)

noting that in contrast to the DC case, the RF potential is time-dependent. The same harmonic
expansions as for the DC case is used. The simulations in this section almost exclusively use only

the term Y35, which represents the saddle-type RF potential associated with most linear Paul traps.

Similar to the DC case, we define the magnitude of the RF potential through a factor v(RF), where the

1, n subscript is dropped since they are generally kept at | = 2 and 1 = 2. The factor v(RF) is half the
amplitude of the RF potential field curvature'> in Vm~2. The force on an ion in the RF potential at
time ¢ is then

Fi,x —2x
Fiyr =19 2y qiv'®F) cos (Ogpt + Pre) (4.21)
F. 0

with Qgg the trap drive frequency, and ¢gr the trap drive’s phase.
The simulation allows for the time-dependent RF potential to be substituted by an effective static
potential, the pseudopotential, with forces given by:

Fi,x —2x 1 qZ)(RF) 2
Fyr =92 m\ Onp (4.22)

F, 0

(RF) to denote the amplitude of the curvature of the RF potential. However, the definition of v(RF)

used here swallows up the factor 1/2! in the second order Taylor expansion of the potential, so v(RF) is half of the amplitude. T
prefer this notation because it is more consistent with v;, in the DC case
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Using the pseudopotential in simulations neglects RF motion of the ions and provides an approxi-
mation for the remaining secular motion. This can be immensely useful for numerical simulations
where one is confident that the pseudopotential approximation is accurate, since the integration step
size can be relaxed by an order of magnitude, reducing simulation time.

For our purposes, as explained in Section 4.2, the time-dependent RF potential cannot be neglected.
Still, the option to simulate ion trajectories within a pseudopotential is a useful tool for debugging,
performance testing, and comparative studies.

-Coulomb interaction-
The Coulomb force on ion i due to the co-trapped ions j is

F(Coul) 1 qiq;
ik - — 2

(Tik —Tjj)- (4-23)

with €g the vacuum permittivity, and ¢; and g; the charge of ion i and j.

-Doppler cooling-

Typical ion trap experiments use Doppler cooling to remove energy from ions. The force that the
Doppler cooling beam imparts upon ions thus plays a fundamental role in their dynamics.

Doppler cooling is a stochastic photon absorption and emission process, typically spanning a
manifold of many electronic levels. For example, a °°Ca™ ion is typically Doppler cooled in an eight-
level manifold using 397 nm and 866 nm light. The stochastic and discrete nature of emission and
absorption suggests that one must include randomized impulses to ions when numerically integrating
their motion. Such discrete events are not well-accommodated by the built-in ODE solvers provided
by Matlab, many of which are optimized to use internal variable time-steps. That is not to say that
such processes cannot be adapted in numerical integration, but this requires specialized numerical
methods.

A convenient solution is to substitute the discrete random impulses of emission and absorption
by an average continuous damping force, and to approximate the many-level cooling manifold by a
two-level system, with an effective spontaneous decay constant, I'. Given a beam with an on-resonance
coupling strength () and a detuning from resonance ¢, an ion with velocity 7 experiences an effective
force given by [81]

> r 02/2

rd) = = - hkp, 2
202/2+12/4+ (6—Fkp- )2 (4:24)

where kp is the Doppler cooling beam’s wavevector and 7 is the reduced Planck constant.

We do note here that this method fails to accurately portray ion dynamics when they are cooled
near the Doppler limit [81], since quantization of motion and photon recoil are not included. Ions
are always orders of magnitude above the Doppler cooling limit in the simulations presented in this
chapter.

4.4.2  Analytic description of surface trap potentials

In general, the simulation models the RF and DC fields as ‘ideal” harmonic potentials. The potentials
of real ion traps deviate from this ideal, having higher-order terms, which are more prominent further
from the trap center. For a few crystallized ions in a 3D Paul trap, such anharmonicities can generally
be neglected, as the range of the positions of the ions is small with respect to the size of the trap. In
smaller traps (i.e. traps with lower ion-electrode separation such as surface traps) such anharmonicities
may not necessarily be neglected and can affect the normal modes of motion [66]. Experimentally, the
most detectable indication that the trap potential of a surface trap is anharmonic is its finite trap depth:
Perfectly harmonic traps would be infinitely deep, which, judging by our rate of ion loss, is clearly not
the case with surface traps. The simulation includes the option to take the non-ideal potential of a
surface trap into account, as outlined below.
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For analyzing ion motion in anharmonic trapping potentials, one could include higher-order
spherical potential terms, using values of v; , with [ > 2. However, to accurately describe the potential
of a surface trap, also far from the trap center, one requires many high-order terms™, which is
mathematically cumbersome. A more realistic way to analytically model the potential of a surface
trap is to follow the method of [156]: Assuming an infinitely large surface trap composed of square
electrodes with no gaps, the potential V, generated by applying a voltage v, on an electrode ¢ is given
by

(4.25)

v Lo (xi —x)(zj — z)
Vo(x,y,z) = — —1)i(=1) tan"! !
R0 N P oty e

Here, the electrode’s opposing corners have coordinates (xo,0,z0) and (x1,0,z1).

We generate an electrode layout similar to the trap discussed in Section 3.2.1.2 (though ignoring
the gaps between electrodes and the optical access slot) and calculate the voltage set {v,} required to
produce a desired trap potential, using the methods discussed in Section 2.3.1. The full potential is
then given by the sum of electrode potentials, } , V.. Expressing the potential in the simulation in this
fashion is useful because it faithfully models the anharmonicity and trap depth inherent to surface
traps and thus provides an effective tool to make a side-by-side comparison of an ideal harmonic trap
and surface traps. We make such a comparison and analysis in Section 4.8.

4.5 FULL ION DYNAMICS SIMULATIONS

In this section, numerically calculated ion trajectory data is used to analyze properties of RF heating.
The simulator is described in Section 4.4. We refer to these simulations as “full,” to contrast them with
simplified simulations later in this work.

4.5.1  Simulation overview

In our simulations, we track the dynamics of two trapped “’Ca™ions. We use trapping parameters that
match typical experimental values [106], with motional frequencies of {wy, wy, w.} = 27{3.3, 3.6, 1.1}
MHz, where z is the direction with no RF potential. At the start of the simulation, ions are placed in
their crystallized equilibrium positions'>. One ion has zero initial velocity, while the other is given an
initial velocity in a random direction, mimicking a collision with a background gas particle. An initial
kinetic energy of 1.4meV (=~ 80ms~') is chosen, as it is marginally more than the required energy to
melt the crystal [157]. This initial energy is, incidentally, in the same order of magnitude as a typical
value of energy transfer induced by a collision with a background gas particle. Most simulations
contain 5 ms of trajectory data®.

4.5.2  Extracting secular energy

To investigate RF heating, we must be able to extract the total secular energy from simulation data,
which can be obtained by using Eq. 4.9. The kinetic energy of an ion with mass m; is Vi, = (1/2)m;07.
The Coulomb energy between particles i and j with charge g; and g; is given by

1 qi4;

V. =— 4 .26
Coul 47'[60 ‘71_1—;]| (42 )

Including terms up to [ = 4 is not sufficient, and this already contains 25 v; ,, terms.

The equilibrium positions can be analytically calculated for a two ion crystal, for known trapping parameters. However, in
our case, we can numerically obtain them by running the simulation with arbitrary starting points, but with a strong velocity
damping force, which quickly brings ions to their equilibrium positions. These positions are used as starting positions in further
simulations.

For a two-ion trajectory simulation on my laptop, a 5 ms trajectory takes about 20 minutes of simulation time, and contains
roughly 1 GB of output data
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with the vacuum permittivity €y. Vpc(7) and Vgg(7) can be analytically obtained from simulation

parameters (see Section 4.4).

The simulation, however, does not provide the ions’ secular motion, FESeC). This motion thus needs
to be extracted from the full simulated ion trajectory. One cannot fairly obtain secular motion by
simply low-pass filtering the position data, in the hope of removing the part of the Fourier spectrum
that describes the higher-frequency micromotion: The signals corresponding to secular motion and
RF motion overlap spectrally. In particular, we wish to retain motional information that results from
ion-ion Coulomb interaction, which in ion clouds have timescales similar to the trap drive period'”.
The secular motion is obtained from the simulated motion as follows:

The simulated time-dependent position of ion i is denoted as ?i(o)/ and is to be separated into a

secular and RF component, ?i(sec) and ?’l(RF).

The equation of motion that governs the position 71@) is given by
3(0 =
rf ) = —%VVRF,O(riO)) cos (Qgpt). (4-27)
F 4 = 0 gy (75 4+ ) cos (Ot (428)

If the secular frequency wy, ,y is much lower than the RF drive frequency Qgg, the RF component of
position can be described by the equation of motion

) VA% -;(sec)
?Z(RF) R~ —qRF;nw cos(QRgt). (4-29)

This approximation is valid if the amplitude of 7XF in one oscillation period is small enough such

that VVRrp (?i(sec)) changes negligibly. Since simulations do not directly provide ?i(sec)
approach is used, where initially the simulated positions 71.(0) are used as an approximation for the

secular motion: ?Esec) ~ ?Z.(O). The RF component of the position is then

, an iterative

SRE) _qVVRF,O(7,(O))

cos(Qgpt). (4.30)
The secular motion is iteratively approximated by removing the RF component from the full simulated
positions:

7

1 -(0 —(RF
(1) _ 70) _ 5(&0)

-7 (4-31)

=(0)
~0) , 9VVreo(7; ")
= TZ( ) + T%{F COS(QRFt).

(1) . S . -0 . . —(RF) .
As rl( ) is a better approximation for secular motion than rl( ), we can improve our estimate for rf ) n

Eq. 4.30. Higher order adjustments to the secular position can thus be found iteratively:

_ 0 qVVRF,0(7§n))

S(n+1)
r i mQZ
RF

{ cos(Qget). (432)
Note that Equation 4.32 remains an approximation for the secular motion and is not an exact solution
even as 1 — 0.

Figure 4.3(a) demonstrates how a simulated trajectory (projected in one dimension) is adjusted using

4.32 in several iterations to remove the RF. The trajectories 71(2) and 7"1(3) are visibly indistinguishable.
The remaining motion is approximately secular. We can further quantify the performance of the

iterative RF removal method: for this, a separate simulation of a single trapped ion is run, which

Another method to remove the RF component is to isolate (interpolated) trajectory data at stroboscopic intervals corresponding
to the period of the RF drive [158]. Also here, however, trajectory information relating to ion-ion Coulomb interaction is lost
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produces a trajectory that exhibits both secular motion and micromotion, but no unpredictable behavior
due to Coulomb interaction. In this case, the theoretical secular motion is purely sinusoidal, and
secular energy is constant. We can thus analyze how well a perfect sine fits the numerically obtained
trajectory r(") for various iterations 1. The goodness-of-fit is then quantified by the fit’s coefficient of
determination, i.e., its R-squared value [159]. Figure 4.3(b) shows the R-squared value as function of n
(right axis). An additional metric is to gauge the stability of the calculated secular energy using Eq.
4.9, which in the ideal case is constant. The stability of the numerically obtained secular energy is
shown in Figure 4.3(b)(left axis), expressed in terms of the ratio of the standard deviation to the mean

of the energy. The ion trajectory ?l.(") and secular energy Egec both change negligibly for orders higher
than n = 3. However, these metrics do not reach zero, as this method only provides an approximate

solution.
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Figure 4.3: (a) Secular motion is extracted from simulated trajectories in iterative steps. Ideal secular trajectories
should be sinusoidal, and the secular energy should be constant. (b) shows goodness-of-fit (R-squared)
of the calculated secular trajectories fit to a sine curve, and the ratio of deviation in calculated energy
to its mean.

The secular energy Egec is obtained using Eq. 4.9 with the secular positions ?i(n) ~ ?Esec) and the
(

corresponding velocities z‘)’in). In this thesis, when referring to the ion cloud’s energy, the secular energy
Egec is implied, with n = 3. In the following section, RF heating is investigated by analyzing the secular

energy of a simulated cloud of ions.

4.5.3 Simulation results

Figure 4.4(a) shows traces of the energy Ese. over time, for several simulation runs. All simulations
start with identical parameters, except for a randomly chosen RF phase, which reflects that a collision
with a background particle can occur at any time during the RF-drive cycle. In every trace, energy
increases over time, but not necessarily continuously. The change in secular energy is attributed to RF
heating. Although the only difference between the individual simulations is the initial RF phase, there
is a large variation in the development of energy over time, resulting in energies ranging from about 4
to 30 meV after 5 ms. This variation attests the chaotic nature of melted ion dynamics.

Upon closer inspection, despite this unpredictable behavior, quasi-stable solutions do exist: a
prominent example in Figure 4.4(a) is denoted by the light green area. Here, starting from after 1
ms, the secular energy remains comparatively steady. Such areas of stability occur only when the
sinusoidal position of the two ions are out of phase by nearly 7, in each dimension. We will see in
Section 4.6.1.2 why this condition leads to increased stability.

It is clear from the traces in Figure 4.4(a) that one could never hope to accurately predict the course
of energy gain of ions of a single melting event in an experimental setting. However, by simulating
multiple melting events, an average energy gain can be estimated. The thick dark blue line in Figure
4.4(a) is an average of the individual simulations, which increases approximately with the square-root
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Figure 4.4: Secular energy of simulated ion clouds. (a) Multiple simulation runs with nearly identical starting
conditions (thin gray lines) exhibit a large spread in energy change. The average of these runs (thick
dark blue line) increases smoothly over time, following a square-root-of-time trend. The green area
highlights an example of a quasi-stable ion trajectory (b) A close-up of one of the traces from (a) shows
that energy changes at discrete moments in time, coinciding with peaks in Coulomb energy, also
shown in (b).

of time. This trend of the average increase of energy is a characteristic of RF heating, and is observed
regardless of which trap parameters are used (for example, motional frequencies, ion mass, etc).

To further examine the dynamics that lead to energy changes, we take a trace from Figure 4.4(a)
as an example, and show a short time interval in Figure 4.4(b). Additionally, the Coulomb energy of
the two ions in this interval is plotted. Secular energy does not change continuously, but at discrete
points in time. These discrete changes in energy are correlated with moments of increased Coulomb
interaction. This is in agreement with the intuitive description of RF heating presented in Section 4.3.3:
RF heating occurs due to multiple ions’ joint interaction with the RF field and Coulomb force. As a
reminder, this interaction does not influence ion crystals because the frequencies of the Coulomb force
and RF motion are spectrally separated. In contrast, in an ion cloud the Coulomb force exhibits rapid
changes that occur on timescales similar to the RF drive period.

From here on, we will refer to the moments of increased Coulomb interaction that may lead to a
change in energy as a collision'®. Individual changes in energy as a result of collisions are denoted by
AW.

It is instructive to gather statistics of these energy changes, as it provides insight to the orders-of-
magnitude associated with RF heating. We thus collect a set of energy changes {AW}, by evaluating
the secular energy before and after any peak in Coulomb energy. We additionally extract statistics
about the ions locations within the trap where they undergo these energy changes, and the times at
which they occur. All traces from Figure 4.4(a) are used for this collection.

Figure 4.5(a) shows the distribution of the location that the collision occurs, with respect to the
trap center. All collisions occur within 4 pm of the trap center, regardless of the amplitude of the ion
motion. For reference, the distribution of ion location with respect to the trap center is shown, which
displays ion oscillation amplitudes of ~ 10 — 30 pm)™.

Figure 4.5(b) shows a polar histogram depicting at which phase of the RF drive cycle a collision
occurs. Collision times are not correlated to the RF phase. However, collisions that lead to a large
change in secular energy have a strong tendency to occur when the magnitude of the RF field is
highest (at extrema in the RF cycle). This is shown in the same polar histogram in Figure 4.5(b), where
an arbitrary energy cut-off of |AW| > 1meV has been chosen for visual clarity. The tendency for high
changes in energy to require the collision to be at maxima of the RF field, as graphically depicted,
aligns well with the schematic depiction of RF heating presented in Figure 4.2. Here secular energy
change is depicted as occurring when the RF component of relative velocity has an opposing sign
directly before and after the peak of the collision. Times where the RF component of velocity is zero

18 The fact that energy is not necessarily conserved makes it an inelastic collision.
19 Note 20 in Appendix e
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correspond to times where the RF field is at a maximum or minimum. The simulated data therefore
corroborates our intuitive description of RF heating provided in Section 4.3.3.

Figure 4.5(c) shows a histogram of the energy changes that occur in the example trace of Figure
4.4(b). The majority of collisions lead to near-negligible changes in energy*°. The distribution in
energy changes is qualitatively symmetric. However, the mean of the distribution (y = 5.2 peV) and
average collision rate (f.o; = 528 collisions per millisecond), leads to an overall increase of energy of
approximately 14 meV after 5 ms.

Figure 4.5(d) shows the standard deviation of { AW}, for various bins of peak Coulomb interaction
energy. It is apparent that a larger change of secular energy requires higher Coulomb interaction. The
inverse is not necessarily true: high Coulomb interaction does not always result in high changes in
secular energy. Returning to the intuitive picture of Section 4.3.3, the magnitude and sign of energy
change is essentially luck of the draw, depending on how the collision lines up with the phase of the
RF field. We observe that collisions with Coulomb interaction energies below 0.5 meV, indicated by
the dotted line in Fig. 4.5(d), do not result in noticeable changes in the system’s total energy. Thus,
from here onward, we will consider an ion-ion collision to be an event where the interaction energy
exceeds this threshold.

In summary, the figures and statistics provided in this section give an insight into the parameters
and their orders-of-magnitudes that comprise RF heating: hundreds of collisions occur per millisecond,
collisions induce energy changes of tens to hundreds of microelectronvolts, and these changes overall
lead to an average RF heating rate of several millielectronvolts per millisecond. The results shown
in this section have used a specific parameter set, and are thus not generalized. Despite this lack of
generality, these simulations provide an important take-away: RF heating is not a continuous process but
occurs at discrete moments of high Coulomb interaction energies. In the following section, this notion is
used as a basis for a simplified simulation that estimates RF heating rates, allowing us to produce
generalized results at a low computational cost.
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Figure 4.5: Statistics of ion-ion collisions (a) Histogram of collision location with respect to the center of the trap.
Collisions close to the center of the trap compared to the ions” motional oscillation amplitudes. (b)
Polar histogram of RF drive phases that collisions occur. Collisions that lead to high secular energy
change are correlated with the RF phase. (c) Histogram of the magnitude of energy changes AW due
to collisions. (d) The standard deviation of these energy changes oy is shown in bins of the collisions’
peak Coulomb energies.

20 Note 21 in Appendix e
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46 COLLISION MODEL

This section provides a generalized quantitative description of the parameters involved in energy
dynamics in RF heating. This description is used as a basis for a simulation that tracks the energy of
an ion cloud subject to RF heating. This simplified simulation allows us to estimate RF heating rates at
a significantly lower computational cost compared to the full ion dynamics simulation of the previous
section.

4.6.1  Model parameters

To model RF heating, events of increased Coulomb interaction — ion-ion collisions — are considered.
Although two melted ions continuously experience a Coulomb interaction, in the previous section it
was shown that below a certain threshold of Coulomb energy, changes in secular energy are negligible.
We can thus consider collisions to be discrete events where the Coulomb interaction surpasses the
threshold that is found from the full simulation. Having been separated into discrete events, RF
heating can be modeled in two steps: 1) A collision induces a change in secular energy, AW, and 2)
secular energy remains constant until a new collision occurs, separated by a time t.,;. The simplified
simulation alternates between generating new values of AW and ¢);. Values are sampled randomly
from a sampling distribution, based on models presented in the following sections.

4.6.1.1  Collision energy

We draw on results from the full ion dynamics simulation presented in Section 4.5.3 to derive and
validate a model that describes the energy change due to a collision, AW.

The change in energy of any dynamic system of particles i can be expressed in terms of the forces F;
acting on the particles with velocities 7;, as

AW = [ Y-t (4.33)

In a Paul trap, the total force on each ion is the sum of static and RF fields, and the Coulomb force:

E = Fi(DC) + IE;(RF) + I_—“;(C(’ul). The velocity of the ions can be expanded into the contributions of secular

and RF motion, 7; = 77'§sec) + 5§RF) . The product F; - 7; can thus be expanded into six components.

To deduce which of these components carry information about energy change due to RF heating, we
remind ourselves of the phenomenological description presented in Section 4.3.3. Here, it was claimed
that energy is exchanged from ions RF motion to its secular motion through an interaction with the
Coulomb potential. We thus conjecture that a transfer of energy occurs between the components
Igp = [ FCo . 5 dt and e = [ FCou . glse)dt. Figure 4.6(a) displays the evolution of these two
integrals over the duration of one collision. The Coulomb energy Ec,, and total energy Esec are plotted
alongside. These energies are offset to put their initial values at zero. After the collision, the values of
the two integrals Irp and Isec are equal but opposite. The magnitude of these changes matches the
change in Egec. Around the peak of the collision, the moment of highest Coulomb interaction, energy
is temporarily stored in Ec, which comes primarily from the energy integral described by the ions
secular motion, Isec. In fact, in an RF-free scenario, we have Ecqy; = Isec by definition. In this case, Isec
would be zero when integrated over the full duration of the collision (assuming Ec,, is negligibly
small before and after the collision).

Energy exchange between the RF field and the ions secular motion can be interpreted as a transfer
of energy originating from the forces produced by Irr. We see in the example in Figure 4.6(a) that a
loss of energy in Ixp over the duration of a collision corresponds to a gain in energy in Isec, which
ultimately corresponds to an increase in secular energy Esec. The Coulomb force has thus mediated
a transfer of energy from Egp to Egec. The change in secular energy is given by AW = Isec = —IRF.
While both integrals describe the secular energy change, Isec contains sharp peaks at moments of high
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Coulomb interaction. —Igy is thus a smoother, and therefore more intuitive, representation of AW. In
summary, AW can be expressed as

— F(Coul)  ~(rf)
AW =~ / LiET (4-34)
Usi 7=(Coul)  =(Coul) . . . .
sing F; =-F for a two-ion collision, the change in energy reduces to
AW = — / E(Coul . A5t gy, (4.35)

with the difference in RF velocity between the two ions AF(") = z‘fgrf) - z")’grf).
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Figure 4.6: Comparison of secular energy metrics. (a) During a single collision, energy is transferred between
the RF and secular components of motion. Isec and Irp respectively gain and lose AW energy, which
marks an overall increase in Esec (b) Comparison of total secular energy (Esec, Eq. 4.9), the energy
change integral (Eq. 4.35), and the simplified integral (Eq. 4.42). The integrals are offset to 2meV at
t = 0 to reflect the initial energy.

The above description might seem more speculative than physically founded, and should be
scrutinized more thoroughly. We validate Eq. 4.35, using numerical data from one of the full ion
dynamics simulations from Section 4.5.3, Figure 4.4(b). The energy development of Eq. 4.35 is shown
in Figure 4.6(b) as the accumulation of AW + Ejnjt, with Einjr = 2meV to reflect the initial energy of
the system. For reference, the total energy Egec (see Eq. 4.9) of the system is also plotted, showing close
agreement. To quantify this subjective statement, as has been done for Figure 4.5, we collect energy
changes due to collisions, defined as the difference in secular energy before and after events where
the Coulomb energy exceeds 0.5meV. These energy differences are extracted both from the absolute
secular energy and the integral of Eq. 4.35. Comparing the two sets of energy differences, which ideally
are identical, a correlation between the two energy metrics is calculated to be an R-squared [159] value
of 90%. This confirms that Eq. 4.35 can faithfully describe the change in secular energy.

Further simplification of this integral allows us to express AW in a form that readily translates into
a computationally efficient model for predicting energy changes. This simplification can be achieved
by approximating A7(RF), The relative RF velocity is estimated knowing the ions’ positions relative to
each other, and the phase of the RF field:

For a saddle-type RF potential

o 1
Ve (i t) = ~¢gp (17, — 17, ) cos (Qret) (4-36)
5 y

33



84

CLASSICAL ION DYNAMICS IN AN RF PAUL TRAP

with potential curvature yrr, the force on an ion i with charge g at position 7; = [r;y, 7;,,7;.] is given
by

E(RF) (7i,t) = —qV Vgrr (4-37)
= [~7iqx Tiy, OlgPrr cos (Qrt). (4-38)

We have shown in Section 4.5.2 that we can estimate an ions motion due to this force by assuming that
the ions’ positions r; , and r;, are approximately constant during an oscillation cycle with frequency

QOgg. Likewise, in assuming that r;, is constant over an oscillation cycle, one can approximate

Tix R rl(;ec). Integrating | FRE) gt — m5(RF) with mass m allows us to approximate the RF component

of the velocity as

7% ~ [-r}fc),rl?;ec),o]%% sin(Qget). (4-39)

The difference in RF velocity is then

AFRE) ~ [—ATJ(CSQC), Ar](/sec),o] nzlé))RIfF sin(Qggt). (4-40)

Here Arg(sec) and Arésec) are the ions’ separation in their secular motion.
The Coulomb force is given by:

- 1 2
F(Coul) _ q A7 .
1 dmteq [ATR (4-41)

with A7 = 71 — 7, the ions’ separation, and €y the vacuum permittivity. The Coulomb force l_fl(coul)

is dominated by the secular motion of the ions, such that A7 ~ AF(sec) Equation 4.35 can thus be
approximated as

(sec) 2_ (sec) 2
(Arx ) (A;’y ) sin(Qggt)dt. (4-42)

3
9"YRF /
AW =
47T€011’IQR1:

| AF(sec) ’

Since this formulation of AW has taken steps of approximation, its validity should be examined.
Similar to having analyzed full ion dynamics simulation data with Eq. 4.35, we now analyze the same
data set with Eq. 4.42. Results, shown in Figure 4.6(b), are in agreement with the results generated
with Eq. 4.35, and with the total energy Esec. The energy changes in these results are compared to
energy changes derived from Ege, resulting in an R-squared correlation of 82%, confirming that Eq.
4.42 provides a good approximation of energy change in a collision.

It may not be obvious why this formulation is considered to be a ‘simplified” version of Eq. 4.35. The
benefit of 4.42 is that very little information about the trap and RF dynamics of the ions is required.
Notably, to estimate energy change, neither the ions” absolute position within the trap, nor the RF
components of their motion are required. In Section 4.6.2, this equation is used in a simulation to
estimate ion energy. This simplified simulation benefits from the computational advantage that it does
not require information about particle dynamics at time-scales of the RF drive.

4.6.1.2  Collision rate

The previous section discusses an analytic expression for energy change AW as a result of an ion-ion
collision. To estimate the change in energy over time resulting from multiple collisions, the time
between collisions f.,; must be determined. We generate a time between collisions by first determining
an average collision rate f. This rate is the number of collision events that occur for particles with
oscillatory motion in three dimensions. Our method for determining f.jjis outlined in this section.
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We start by assuming that each ion moves sinusoidally, characterized by their secular frequencies
wy, in three Cartesian directions, k = {x,y,z}. The exercise is then to analytically estimate how often
in a given time ions are within a certain range of each other. A secular approximation of the ions
motion is used. While in reality ions experience RF driven motion, this additional motion is not
dominant: ion motion from simulations and analytic approximations in Section 4.5.3 show that for
typical trapping parameters, the amplitude of the RF-driven motion is less than 10% of the amplitude
of secular motion*'. Furthermore, the approximation is justified since the RF component of motion of
the two ions is strongly correlated when they are within collision range. Thus, the RF motion can be
neglected when considering timing of collision events. Additionally, as discussed in Section 4.5.3, most
collisions occur near the center of the trap, where the amplitude of the RF driven motion is minimal.

In the absence of a Coulomb force, the secular position of ions is sinusoidal in time, with distinct
frequencies and amplitudes in each dimension. The ion i has amplitudes a;;, and phase ¢; . Its
position at time f is thus given by 7; = a;  sin (wit + ¢; ). We pose a criterion that defines when a
collision occurs, as being events where the absolute distance between ions in each dimension separately
is less than a chosen collision threshold, 7., i.e. Vk : ”’1,k — r2,k| < 7. This criterion ensures that the
positions of the two ions are both within the bounds of a cube of sidelength r, but necessarily within
an absolute distance 7. of each other.

To estimate the frequency that the condition is satisfied in all three dimensions simultaneously,
we must first determine how long ions are within a projected collision range in each dimension. This
duration is denoted as Aty.

We start by analyzing the one-dimensional (x) case: the separation between ions, dy = 11, — 1px is
sinusoidal with frequency wy [160], and can thus be expressed as

dy = ag sin(wxt + ¢gx) (4-43)

with amplitude a; , and phase ¢, , given by

agx = \/ ﬂ%,x + ﬂ%,x — 201,507, cos (Agy) (448)
¢gr = tan"! ( 1,5 810 (1,x) — A2, SIN(P1x) )
X ,

B ai,x C05(471,x) —a2x COS((PZ,X)

(4-45)

with A¢y = ¢o x — ¢1 5. Rewriting Eq. 4.43 for t gives:

dx
t= wix [sin_1 (ﬂd,x) — A4)x} . (4.46)

The amount of time At, that the two particles are within collision range 7. is

Aty = t(dx = Vc) - t(dx = _Vc) (4-47)
2 . ( Te )

= —sin —_— 48

o tax (4-48)

In one dimension, non-interacting ions are within (projected) collision range exactly twice per
oscillation period (or be continuously within range). The collision criterion in one dimension, |dx| < 7,
can thus be represented by a pulse wave?*:

1, if (t mod Ty) < Re{At}.

By(t) = (4-49)

0, otherwise.

with the time between collisions T = 7/wy, being half the oscillation period. If . > a,4,, then At,
becomes complex, which is unphysical. Fortunately, an easy fix is to use only the real part of Aty,

The amplitude ratio of RF-driven motion to secular motion in the absence of excess micromotion is approximately given by half
of the Mathieu g-parameter (see Eq. 2.6).
Also known as a pulse train, a rectangular pulse waveform, a rectangular wave or a periodic rectangular function
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which caps off at Aty = Ty when r. < a,4,. This case corresponds to the two ions continuously being
within collision range. Accordingly, By is then continuously 1, which is physically accurate.

This model is extended to three dimensions with three pulse waves, B (xy,2}7 each characterized by
periods Ty, , .}, and pulse durations ATy, , .1. The collision criterion is satisfied in all three dimensions
when all three pulse trains are simultaneously 1; in other words, when ByByB; = 1. The pulses of
BBy B, occur at irregular intervals, but we can determine an average rate at which pulses occur. This
average rate of pulses represents the ion-ion collision rate, and is given by*3

. ARARAL (111
fe =~ ( a + ar t Ap )
T.T,T- \Aty ' At, AL

(4.50)

The average time between collisions is .o = 1/ feon- A derivation of the collision rate is given in
Appendix a.

4.6.2  Simplified RF heating model

In the previous sections, models have been presented to estimate the secular energy change AW due
to ion-ion collisions in a cloud, and the average duration between collisions, f.yy . In this section, these
models are used to construct a simplified RF heating simulation. The simulation uses trap parameters
and the ions” secular motion amplitudes to alternatingly generate an energy change and a duration
until a subsequent collision. This section outlines how the models from the previous section are
used to randomly generate AW and f,) and how these values are used to update the parameters
of the simplified simulation. The simulation is used to estimate an RF heating rate for various trap
parameters.

4.6.2.1  Simulation overview

As described in the previous section, the motion of each ion is described as being sinusoidal in three
orthogonal directions (indexed k), with parameters a; ; the amplitudes of ion i, and a relative phase
between the ions A¢y. These parameters are depicted in Figure 4.7. It is assumed that these parameters
are constant between collision events. The total secular energy,

N Y -
i,
therefore also remains constant between collisions, as is seen in the full ion dynamics simulations
shown in Figure 4.4. Collisions result in updates of the parameters 4; ; and A¢y, which may also reflect
a change of energy AW.

The approximation of Eq. 4.51 is based on the assumption that the Coulomb energy is negligible
while ions are far outside of the collision threshold. The simulation is initialized with a chosen energy
Ey, distributed randomly# over the amplitudes 4; ;. The initial phases A¢y are chosen randomly and
uniformly.

The parameters a; are applied to Eq. 4.50, using values of At; given in Eq. 4.47, to produce an
average collision rate f.j. The collision threshold is chosen to be r. = 1.44 ym, corresponding to a
Coulomb energy of 0.5meV, based on analysis of simulations described in Section 4.5.3. There it is
shown that collisions with Coulomb energies less than 0.5 meV do not result in appreciable changes in
secular energy.

Eq. 4.50 produces an average duration between collisions (f.o; = 1/ feon) for a given ion motion
parameter set. This is, however, only an average of some distribution function; to generate a new collision
time, one could simply assume ¢t = fcop, but a more fair choice can be made by drawing randomly
from a realistic probability distribution function. To determine this function, we note that the time
between collisions is usually longer than a typical secular motion period. Due to their aperiodic nature,
subsequent collisions therefore occur at uncorrelated intervals. The probability distribution function

23 Note 22 in Appendix e
24 Note 23 in Appendix e
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for collision times can thus be modeled as an exponential distribution, P(t) = f.onexp(—tfeon)- A
discussion on the validity of this choice of function is offered in Appendix a. A random number from a
known probability distribution function P(t) can be generated by drawing a random value p, uniformly
between o and 1, and transforming it with the inverse cumulative distribution function (ICDF) [161] of
P(t). A random time f. is thus generated from the ICDF of the exponential distribution, given by
—log(1—p)/ feon-

The soonest a collision can occur is half an oscillation period after the previous collision. Such a case
could occur, for example, when a; is small (S ) in two dimensions. In that case, ions move apart
sinusoidally along only one axis, and meet each other again half an oscillation period later. Earlier
collisions cannot occur. Therefore, if the chosen time ¢, is less than miny Ty, this time is discarded
and a new collision time is randomly generated. The validity (and usefulness) of this step is also
discussed in Appendix a.

Now that a time until a collision is established, we turn to generating a random energy change
AW. The equation that models energy change is Eq. 4.42. The only requirements for this equation are
known trap parameters (the amplitude of the RF potential curvature yrr, and the RF frequency Qgp)
and the relative secular motion of the two ions A7(*¢%). The timescale of a collision event is typically
much lower than the period of secular motion. We can thus model the dynamics of a collision as being
independent of forces from the trapping potentials, and solely dependent on Coulomb forces. The
method of attaining A7(*¢) is then to simulate two particles approaching and move apart from each
other, under the influence of Coulomb force, devoid of trapping forces.

This Coulomb collision simulation is run with a collision trajectory based on values derived from a; x
and A¢y. The results of the simulation, along with a randomized RF phase, are applied to equation 4.42
to produce an energy change AW. Based on simulated trajectories and AW, a new set of parameters
a;x and A¢y are produced.

The Coulomb collision simulation works as follows: Firstly, the velocity of the two particles at the
moment of collision is to be calculated. A given set a;; and A¢; ; determines the velocity at the time
of collision, since these parameters define at what phase in the ions’ oscillation the collision occurs.
This phase can be found by referring to Eq. 4.43, where the separation between ions is given by
dy = agjsin(wit + ¢4), shown in the bottom left panel of Figure 4.7. Since a collision occurs when
dr = 0 < a; for all k, we can pose that at the time of collision, wit = —¢,;. Other solutions, multiples
of 7, are dropped without loss of generality.

With the ions’ position, ; = a; ; sin (wit + ¢; ), the velocity is given by v; x = a; ywy cos (wit + ¢; k),
still assuming that the RF contribution to motion is negligible for modeling a collision event. Replacing
wit with —¢;, and substituting ¢, using Eq. 4.45, we find velocities

o1k — a0 cos (_ 1 ( ay e sin(¢r k) — ap e sin(¢p ) > . ¢'k> (4.52)
ik = Wi, ik |/ .

a1k cos(P1 k) — ap cos(¢pok)

which reduces to

wiay k(a1 p — a j cos(Ady
h= (2 L~ 22 OO0 (4.53)
\/al,k + a3y — 2a1/ka2,k COS(A(Pk)

Wiy (a2x — a1,k COS(Ay
Vok = > i) : (4-54)
\/al,k + a5, — 201 kaz cos(A¢y)

The ions’ velocities 7; are used as parameters for the Coulomb collision simulation. The simulation
is a numerical integrator whose only force is the Coulomb force. A schematic outline of the parameters
used and extracted from the simulation are shown in the right panel of Figure 4.7 (in two dimensions,
for visual clarity), detailed below. Two points in a cube with side-lengths 7. are chosen at random,

denoting their positions as 7. Two particles are initialized outside of the collision range defined by

this box, by placing them at positions )‘(’EStart) = )‘(’EO) — Ujts, effectively sending ions back in time by t

from their collision positions. The time ¢ is set to ts = 87/ max; x |v; |, where the value 8 is chosen so
that ions are placed far enough from each other such that the Coulomb energy is far below the collision
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r; = a;sin (wt + ¢;)

", 7")

lon1 ()Z(S)),Ul) X’(O)

lon 2 w """ c':_‘l i( 0)

Position
)
%)
Q

Position

(05, %)

Time

Figure 4.7: Schematic overview of variables described in the main text, as used in the simplified simulation. (Top
left) Ion motion in one dimension. (Bottom left) Relative ion position. A collision occurs at phase ¢,
in the secular cycle. This phase is used in generating initial positions X’fs) and velocities 7; for the

Coulomb collision simulation, depicted in the schematic on the right. See main text for a description

of the variables.

threshold at the start of the simulation. X}Start) and 7; are the starting parameters for the simulation.

The simulation is carried out for a duration 2t;. The simulation thus covers the action of two ions
moving towards a common region, where they experience Coulomb interaction, and subsequently
move away from each other again.

The time-dependent ion positions X;(t) produced by the simulation represent a randomized secular
path, 7;, typical for the secular motion parameters a; ; and ¢; x. The simulated positions can therefore be
applied directly to Eq. 4.42 to produce a change in energy AW. Since the collision time is uncorrelated
with the phase of the RF field, a random phase is added to the argument of the sine.

The total energy Esec of the simulation is defined in terms of a;;, as in Eq. 4.51. The values of
AW that are produced with Eq. 4.42 are used to derive new values of a; and ¢; ,, which update the
value Egec. To update a;, we use values from the Coulomb simulation: we assume the ions originate

from the collision point, xx = ( Xgok) + Xéok) )/2, and are moving at velocity vgfk), the final velocity of the

(rlz) and qbl.(,r,:), as

simulation. This uniquely defines a new set of motion parameters, 4;

(4-55)

(4.56)

(n)

k,sec”

(n)

The new amplitudes a;,’, however, do not reflect the change in energy

()

due to the RF field, since the final velocities v, are determined with an RF-free simulation. These
velocity values must therefore be adjusted to conform with AW. To make this adjustment, Eq. 4.42 is
separated into it’s two sum components,

with associated energies E
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AW = AWy + AW, (4-57)
<Ar£(sec))2 (Ar;sec))2
7(sec 7(sec

which define the energy changes in the two radial directions, with ¢ the same prefactor as in Eq. 4.42.

(new)
ik

The actual update, a , is given by

(new) _ (a<n))2 n ng

a. )
ik ik 4
mwk

(4-59)

which assumes that the excess energy AW is distributed equally over the two ions. The updated set of
parameters can now once again be used to produce a new time until a following collision.

The method of simulating collision energy and duration between collisions readily expands into
more than two ions by extending the parameter set a;; and ¢;;, with i = {1,2,3...}. In this case, a

(i.f)

collision time ¢ CZ{I is generated for all combinations of ion pairs i # j. The ion pair with the shortest
collision time is selected to undergo a simulated collision. The parameters a;; and ¢; ; of the chosen
pair are updated to reflect a collision having occurred only between those two ions, using the method
described above. This method is applicable under the assumption that collisions are predominantly
between no more than two ions. Independent full ion trajectory simulations (with typical trapping
parameters) show that for clouds of three, four, and five ions, about 3%, 4%, and 7% of collisions
involve three or more ions. These values depend on the chosen trap parameters, so are merely intended
as indications of how often a more-than-two-body collision can be expected to occur. We find that our
simulation still works adequately for a five-ion cloud. Larger ion numbers will, however, require a
different approach to simulating energy changes.

In summary, a given a set of parameters a;; and ¢; x is used as a basis for a randomized Coulomb
collision simulation, from which an estimated energy change due to RF heating AW is extracted. The
results of the collision simulation and this change of energy are used to update the values of 4;; and
¢ix accordingly. With this updated set of parameters, a new collision time t.,; can once again be
generated. This process is repeated until the sum of all collision times exceeds the desired simulation
duration. Eg is calculated with Eq. 4.51 for every step of the simulation, giving a time-dependent
energy.

This method of simulating RF heating reduces the computation duration by more than three orders
of magnitude, compared to the full ion dynamics simulation. This speed-up comes mainly from the
fact that the simplified simulation does not need to track particle motion continuously at nanosecond
timescales (corresponding to RF motion). Particle motion is only simulated at brief intervals, at collision
events. Even at those moments, where Coulomb collision simulations are run, the method is still
computationally inexpensive, as RF motion is neglected. The numerical integrator of the Coulomb
collision simulation adapts its simulation step size according to the acceleration that the particles
undergo. Therefore, determining ions” motion as they approach and retract from each other requires
very little computation. Only the brief moment when ions are close enough that their mutual Coulomb
force significantly modifies their trajectories requires finer simulation step sizes.

4.6.2.2  Simulation comparison

We now finally turn to employing the simplified RF heating simulation presented in the previous
section. The first step is to benchmark the performance of the simplified simulation by comparing
its results to those of the full ion dynamics simulation. The simplified simulation is executed with
identical parameters as those used for Figure 4.4. The results of the two types of simulation are
displayed in Figure 4.8. In Figure 4.8(a), the energy gain due to RF heating is shown as an average
of 20 runs of the simulation. Also plotted is the average energy of 20 runs of the full ion dynamics
simulation. The mean values of the two simulations are in good agreement, though the simplified
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model underestimates the variability of all simulation runs, shown by the thin lines, denoting + one
standard deviation. The collection of energy changes AW and duration between collisions ¢, taken
from all simulation runs, are shown in Figure 4.8(b) and Figure 4.8(c) as histograms (normalized to
be displayed as probabilities), shown for both simulation types. The collection of collision data from
the full ion dynamics simulation is taken from events corresponding to peaks in Coulomb energy,
where ion positions satisfy the collision criterion of Ary < r, = 2.8 um in all dimensions k (which was
previously determined to be a cutoff above which energy change due to RF heating is negligible). This
same threshold is used in the simplified simulation. The distribution and occurrence frequency are
similar for both simulation types. We conclude that the simplified energy simulations work reliably as
an indicator for average change in energy due to RF heating?>.
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Figure 4.8: Comparison of full ion dynamics simulation to simplified simulation, displaying (a) the average secular
energy Egec of 20 repetitions of both simulations (thick lines), standard deviation of the 20 repetitions
(thin lines), and histograms of (b) energy differences in each collision and (c) time between collisions.
Histograms are normalized to be displayed as probabilities

4.6.2.3 Analytic RF heating model

The main advantage of the simplified simulation (other than the confirmation that the models for AW
and f.o) are realistic) is the computational speed-up compared to the full ion dynamics simulation in
simulating RF heating. This speedup is crucial in order to investigate RF heating rates for a variety of
trap parameters, from which more generalized statements about heating rates can be made.

Figure 4.9 displays the average development of energy over time due to RF heating, for various
trapping parameters, using the simplified simulation. Unless otherwise specified, the simulations
use two “°CaTions, with motional frequencies Wiyyz = 2m{34,3.3,1.1} MHz and a 35MHz trap
drive frequency. Each trace is an average of 20 individual simulation results, each with randomly
generated initial values of motional amplitudes 4;; and phases ¢; ;, though constrained by a fixed
initial energy of 3meV, given by Eq. 4.51. The number of simulation runs per setting, 20, is chosen as
a trade-off between determining a statistically meaningful mean rate of energy change, and restricting
computational time.

Figure 4.9 shows traces for various (a) radial motional frequencies, (b) axial frequencies, (c) ion
masses, and (d) numbers of ions in the cloud. As seen in Figure 4.9(a), lower radial motional frequencies
result in a lower gain in energy for a melted crystal. This can be explained by the models in the
previous section, where it is shown that both the rate of ion-ion collisions and the energy change per
collision increases with increasing RF power (and radial motional frequency). This behavior is often
observed experimentally, as many ion trapping experiments purposefully lower the RF voltage to
assist in refreezing melted ions [71].

Similar comparisons have been made for varying parameters such as motional frequencies and particle masses, to convince
ourselves that we didn’t just get lucky with the parameter set used in Figure 4.8.
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As seen in Figure 4.9(b), a change in axial frequency has a less significant influence on the heating
rate, compared to radial frequencies. Evaluating the models for collision energy change and time
between collisions in the previous section, we note that the axial frequency does not directly contribute
to energy changes, and only has a minor influence on duration between collisions. A lower axial
frequency has a higher axial (half) oscillation period T;, and thus has a reduced average collision rate
feoll (see Eq. 4.50)2°.

In Figure 4.9(c), ion species with higher masses exhibit a higher rate of energy change, though it
must be noted that to keep the motional frequencies constant with changing masses, the trapping
potentials are adjusted accordingly. Figure 4.9(d) shows that clouds with a higher number of ions
exhibit a larger increase in energy. This is understandable, as collisions are more frequent with more
ions in the cloud. The slower initial onset of energy increase a higher ion number is because the initial
energy of 3meV is quickly distributed over all the ions, thus individual ions have lower average initial
energies. Collisions are therefore initially less energetic, and thus are less susceptible to RF-induced
energy changes.
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Figure 4.9: Two-ion cloud energy dynamics, obtained with the simplified simulation. Unless otherwise specified,
m =40u, w;/(27) = 1.1MHz, w,/(27r) = 3.3MHz, and Qgg/(27r) = 35 MHz. We vary (a) the radial
frequency, (b) the axial frequency, (c) the ions” mass, and (d) the number of ions. In (c), the trapping
fields are adjusted to ensure the same motional frequencies for all masses.

The goal now is to generalize the dependence on various parameters, such as those displayed in
Figure 4.9, into a single generalized analytic expression, based on the ansatz that energy change due to
RF heating follows a diffusive model. For this, the simplified simulation is repeated with randomized
values of the DC confining potential, RF potential, drive frequency, ion number, and ion mass. For
each random setting, the simulation is repeated 10 times, from which an average energy is produced,
as function of time Egec(f). This amount of repetitions is, as before, a trade-off between attaining a
statistically significant average, and minimizing computational time. The resulting energy curves, akin
to those shown in Figure 4.9, can be characterized by a one parameter that quantifies the RF heating
rate. Here, we draw an analogy between melted ion energy transfer and random-walk processes,
such as diffusion due to Brownian motion. In such processes, if a variable is subjected to randomized
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changes, the probability distribution of its value spreads out over time, where the rate of spreading
is characterized by a diffusion constant. In our model, the energy Egec over time f follows a trend of
E ~ \/Dt, where D is the diffusion constant [144, 162]. We perform least-squares regressions between
the model Eq + +/Dt and our simulated average energy Egec(t) to determine the diffusion constant. In
this model the initial energy Eg = 3meV is not a fitting parameter, since this is fixed by the simulation.

The simulation is repeated for 500 random parameter settings, in which we alter the RF and DC
field potential curvatures, the number of ions n, and their mass m. Each parameter setting produces a
particular value of the diffusion constant D, which is used to derive a generalized expression for D, in
terms of ion mass m, axial frequency w,, radial frequency wy, trap drive frequency Qgg, and number
of ions n.

A polynomial model for D is used:

D = am®

Wi Ofgn/ (4.60)
with estimated parameters a - f, displayed in Table 4.1. The uncertainty values represent a £34.1%
confidence interval in the least-squares regression between the polynomial model of Eq. 4.60 and the
simulated results.

E ~ /Dt

D = amPwiwiOgnf (eV2/s)

Fit value | Uncertainty
a 60 18
b 1.0 0.05
c 2.45 0.05
d 0.52 0.04
e 0.00 0.06
f 2.96 0.04

Table 4.1: Fit results for RF-induced energy diffusion model

This simple model provides an effective method to quantify the energy dynamics resulting from
RF heating without resorting to numerical methods. Notably, this model is generally applicable to
any linear Paul trap, and is easily applied by inserting known trapping parameters. Additionally,
the model can be used to estimate an ion cloud heating rate at for a given ion cloud energy E with
E'(t) = /D/(4t) = D/(2E) (this is valid under the assumption that the initial energy E is small
compared to E, which is generally the case, as can be seen in Figure 4.9. The results in Table 4.1 agree
with the previously drawn conclusions about RF heating rates:

For a fixed number of ions, the diffusion coefficient is most sensitive to changes in the radial
motional frequency wgp, reinforcing the notion that reducing this parameter in an ion trap experiment
(by reducing the RF voltage) is the most effective method of reducing the RF heating rate. The heating
rate is to a lesser extent dependent on the axial motional frequency. The heating rate is strongly
dependent on the number of ions in the cloud, due to the increased collision rate.

To summarize, we have developed a simple simulation that is capable of efficiently estimating an RF
heating rate for a low number of trapped ions. By estimating these rates for various trap parameters, a
generalized model for RF heating is established. The strength of this model is that it takes a chaotic
system that to-date does not have a reliable analytic description, and attempts to bring a reasonable
structure and quantification to it. While analytic models for RF heating have been presented previously
[145, 146, 148], these models are only applicable for large ensembles of more than one-hundred ions,
and use a mean-field theory to estimate heating rates. RF heating rates in those works are considerably
higher, by many orders of magnitude, and do not readily allow extrapolation to determine heating
rates at low ion numbers. In the context of quantum computation, where individual qubit registers
are expected to contain low numbers of ions, such analytic descriptions are therefore not directly
applicable. Realizing that the theory presented here limits itself to 5 ions, it remains to be emphasized
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that investigation of higher ion numbers is warranted. This work provides a solid foundation to pursue
such investigation, as it details models and tools that make ion dynamics simulations approachable.

4.6.3  Recooling an ion cloud

An obvious question that arises from the previous section is how to combat RF heating, such that
an ion cloud recrystallizes. Melted ions are in an energy regime where the most effective method of
removing energy is Doppler cooling. Doppler cooling is used universally in trapped ion (and neutral
atom) experiments to extract energy from the particles. It allows trapped ions to become and remain
crystallized, even in the presence of external heating processes, for example caused by electric field
noise [29]. The rate of Doppler cooling can, in its most simple terms, be experimentally controlled with
two parameters: the beam’s power, in other words its coupling strength () to the cooling transition,
and its detuning A from resonance of that transition. It is often the case in trapped ion experiments
that these two parameters are chosen to bring ions as close as possible to the lowest possible energy
that can be attained with Doppler cooling, the Doppler limit [163], given by the mean energy AI'/4,
with I' the spontaneous decay rate of the cooling transition. Reaching this limit requires a low beam
power (O < I') and a detuning of A = I'/2. These settings are, however, not ideal for efficiently
cooling ions with energies far above the Doppler limit, since a high cooling rate typically requires high
beam power, and the ions” Doppler shifts are much larger than the beam detuning. Melted ions are in
this high-energy regime where standard Doppler cooling parameters are not optimal. When melted,
RF heating and Doppler cooling are two competing mechanisms of energy change. If set improperly,
Doppler cooling is outmatched by RF heating, and recrystallization will not occur. In this section,
we estimate which Doppler cooling parameters enable efficient recrystallization, by implementing a
simple cooling model into the simulations. The results in this section are limited to a cloud of two
#0Ca'ions.

Doppler cooling is a stochastic photon absorption and emission process, typically spanning a
manifold of many of an ion’s electronic levels. For example, a “’Ca™ion is typically Doppler cooled
in an eight-level manifold using 397 nm and 866 nm light, consisting of two 4S; /5, two 4P ,, and
four 3D3; levels. Proper implementation of Doppler cooling in a numerical ion dynamics simulation
requires tracking the ions electronic state among these eight levels, and subjecting it to momentum
kicks corresponding to photon absorption and emission. Transitions between states are dependent
on spontaneous decay rates and transition selection rules, which in turn are dependent on beam
polarization, power, detuning, and ion velocity. A full simulation that includes all such dependencies
is outside the scope of this work?7.

As described in Section 4.4.1, in our simulations we elect to simplify the stochastic dynamics of this
eight-level system by applying a continuous time-averaged force acting on an effective two-level system.
This can easily be considered quite a leap in approximation, so it is worth emphasizing that this section
is intended to provide guidelines of laser cooling parameters, and not exact values. In our experiment,
we typically blue-detune the 866 nm repump laser, which ensures that dark resonances due to Raman
interaction with the red-detuned cooling beam [164] are avoided, and apply an abundance of beam
power, to ensures that there is minimal population in the 4D;,, state. We can then assume that the
spontaneous decay rate is dominated by that of the 4S;/, and 4P/, cooling transition. To avoid having
to flip back to page 76: In a two-level system with a spontaneous decay rate I', the average Doppler
cooling force on ion i with velocity 7; is given by [81]:

2
EP =2 @2 R, (4.61)
202/24+T12/44 (6 — k- 7;)2

with () the on-resonance coupling strength,  the detuning of the Doppler beam from resonance
(in radians per second), k the wavevector of the beam, and # the reduced Planck constant. This
force is implemented directly as one of the continuously contributing forces in the full ion dynamics
simulation.

27 Though might have been included if the Covid lockdown had been longer.
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As argued before, studying a broad parameter range is computationally costly when using the
full simulation. It is therefore beneficial to include Doppler cooling in the simplified simulations, so
that cooling parameters that lead to recrystallization can be efficiently found. Incorporating Doppler
cooling in the simplified simulation is not as straightforward as for the full simulation, since the
simplified model does not continuously track time-dependent velocities, as required for calculating
F(P). Doppler cooling is implemented as follows:

As described in Section 4.6.2, a duration t.,) is determined, after which the motional amplitude
and phase parameters a;; and ¢; ; are updated to reflect a change in energy due to a collision. In this
update, the additional energy change due to interaction with the Doppler force is to be included. This
energy is given by

AWD) — / Y E)(5)  gdt. (4.62)

To calculate AW(P) while avoiding simulating ion velocities in RF fields, an analytic expression for
the ions’ velocities @; is required. The RF contribution to motion cannot be neglected when assessing
ion velocity, as seen in Figure 4.1. A secular approximation for 7; is therefore not valid. To obtain an
analytic expression for velocity that includes the influence of the RF field, we turn back to Eq. 4.32,

)

=(n = VV; / ri

rl.( +1) = I’EO) —+ an;E)O%{(F) COS(QRFt), (4‘63)
(n+1) (sec) (0)

where it was assumed that 7; approximates the secular motion 7;"’, and 7; the full motion
(secular and RF). Using VVggo = Yrp[rx, —ry, 0], this expression expands in each dimension as

1’1(,7(“) = rf,(])() (1 + fr cos(Qrpt) + f7 cos?(Qggt) + ... + fI cos"(QRFt)) , (4.64)

with —f, = fx = qprr/(mQgp)? and f. = 0. In practice, secular motional frequencies are easier to
measure than the RF field curvature iR, so it is useful to write fy , in terms of motional frequencies,

as _fy:fx: ka%/QRF'
In the limit that the sum in Eq. 4.64 is taken to infinity, n — oo, the equation simplifies to®

(0)
r(zec) ~ lim r'(nJrl) _ Tik
L,

n—eo WK1 — fy cos(Qrpt)

(4.65)

The secular motion is sinusoidal, with amplitude 4;; and frequency wy. The full motion of the ion can
then be written as

0 .
rl(,k) = a;sin(wyt) (1 — frcos(Orrt)), (4.66)
which was a roundabout way of getting to the familiar expression of the approximate ion motion as in
Eq. 2.6 and Refs. [55, 69]. The velocities are the time-derivative of position,

Vi =8 Wy cos(wit) (1 — fr cos(Qret)) (4.67)
—ai,kkaRF sin(wkt) Sil’l(QRFt). (468)

This expression for velocity, which is a function of ion motional amplitudes g;, is used to determine
the change in energy from Doppler cooling, AW(P), Within the span of time between collisions, the

change in 4;; due to continuous Doppler cooling is small, which allows us to approximate it as

28 Valid if fj is smaller than 1. This is guaranteed by the trap’s stability criterion, f; ~ q;/2 < 1, with Mathieu parameter g;
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being constant for this duration. The change in energy can be expressed for each ion and dimension
separately

N
AW = 0ty FY (@) 0ie(t) (4:69)
n

where the velocities have been discretized into N time-steps of /¢, and are calculated over a timespan
of t.o1 = 6tN, the duration between collisions. Prior to analyzing energy change due to RF heating
during a collision, the values of a; ; are updated to reflect the change in energy due to Doppler cooling
for the duration leading up to the collision:

(4.70)

We find that a time-step of 6t = 10ns is sufficiently small for the purpose of our simulation; smaller
steps do not affect the simulated outcome, and result in longer computation time.

The simplified simulation including Doppler cooling is used to study which beam parameters
are required to overcome RF heating to recrystalize an ion cloud. Some representative results of the
simplified simulation are shown in Figure 4.10(a), shown for coupling strengths )/ (27) ranging from
o0 to 80 MHz, for a detuning of §/(27r) = —40 MHz. These values are chosen because they represent
reasonable beam powers in experimental conditions, and an interesting detuning where the changes
in beam power have a noticeable effect on cooling power (unlike the typical experimental setting of
A =T/2 ~ 11 MHz, where the cooling beam becomes rather useless for any power). The wavevector
is chosen to be k = (271/A)[0.07,0.71,0.71], with A = 397 nm, which is similar to the wavelength and
angle of incidence in our experimental setup. An initial ion cloud energy of 15meV is chosen, which is
a typical ion cloud energy after 5ms of RF heating and reflects a bad-case-scenario that the Doppler
beam is only switched on several milliseconds after a melting event had occurred. Trap parameters
are identical to the default values used in Figure 4.9 (w./(27) = 1.1MHz, w,/(2) = 3.3MHz,
Qgg/(271) = 35MHz, and m = 40 u).

The thick lines in Figure 4.10 are averages of 20 simulation runs, and the thin lines are the standard
deviation of all runs. Results from the simplified simulation are compared to results from the full ion
dynamics simulation with identical trapping and cooling parameters (dotted lines). As in the previous
section, the average trends of the two simulations are in good agreement, although the simplified
model underestimates the total spread of energy in individual runs. This incites confidence that the
simplifications used when implementing Doppler cooling in the simplified model are justified® . The
various plots show that with increasing coupling strength, the Doppler cooling rate overcomes the RF
heating rate.

To determine the requirements for the Doppler beam parameters required for recrystalizing, we
run the simulation for detunings ranging from from 0 to —400 MHz, and coupling strengths ranging
from 0 to 100 MHz, and analyze the final energy after 5ms of cooling, a typical time spent on Doppler
cooling in an experimental sequence. The final energies of the simulations are plotted in Figure 4.10(b),
as a function of the Doppler beam’s coupling strength and detuning. The figure is subdivided into
three regions: in region (i) the final energy is higher than the initial energy, and in regions (ii) and (iii)
it is lower. In region (iii), the final energy is low enough for the ions to have recrystallized within the
5ms simulation time. Region (i) represents a parameter regime where the RF heating rate is higher
than the Doppler cooling rate. In this regime, ions remain melted, regardless of cooling duration. In
region (ii), the cooling rate is higher than the heating rate, but ions likely do not recrystallize within the
5ms cooling time. In typical experimental sequences used for ion-based quantum computation, ions
are not continuously cooled, as sequences contain non-cooled computation steps. If Doppler cooling is
not efficient enough to recrystallize ions before these steps, as would be the case if parameters from
region (ii) were used, the cloud can subsequently reheat while the cooling beam is off. In such a cycle,
ions can indefinitely remain melted. Therefore, in such an experimental sequence, Doppler cooling

Though this does not prove that the two-level continuous force model for Doppler cooling is accurate, since both the full and
simplified simulations use it.
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parameters that ensure recrystallization are more stringent, corresponding to region (iii). Figure 4.10(b)
shows that recrystallization in 5 ms is only ensured in experimental sequences if the Doppler beam is
detuned between -100 and -300 MHz, with a coupling strength > 50 MHz. If the cooling beam is on
continuously, this requirement is more relaxed, with Q) 2 20MHz and ¢ 2 20 MHz, corresponding to
regions (ii) and (iii) in Figure 4.10(b).
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Figure 4.10: Simulated energy dynamics with Doppler cooling. (a) Ca - Ca cloud energy for various cooling
coupling strengths, with detuning 6/(271) = —40 MHz. For comparison, results from both the full
ion dynamics simulation and simplified simulation are shown. (b) Energy after 5 ms of Doppler
cooling, for various detunings and coupling strengths.

4.7 EXPERIMENTAL VALIDATION

The simulations of the previous sections beg the question “Can we see these RF heating effects in
the lab?” In our experiment, we have indirectly seen the simulation results in effect. The inclusion of
additional hardware that implements a “refreeze” beam in every cycle of an experimental sequence
has resulted in improved ion lifetimes, for both single- and mixed-species ion crystals. The settings for
this refreeze beam were chosen based on the guidelines presented in the previous section.

It is, however, useful to attain a more quantitative experimental confirmation of the RF heating
(and recooling) rates that the simulations have provided. In this section, we validate the RF heating
simulations by comparing them to experimental ion cloud energy measurements. In these experiments,
ion clouds are generated deterministically, and their energy is inferred by monitoring their fluorescence.

4.7.1  Experiment Overview

The experiments are performed on two *’Ca™ions, in the surface Paul trap described in Section 3.2.2.
Fluorescence detection and Doppler recooling is done by off-resonantly exciting the 45/, <+ 4P; /»
transition at 397 nm. Undesired population in 3Dj3 /, is repumped with 866 nm. The repumper is blue-
detuned by approximately 10 to 30 MHz, and its power is adjusted such that the ions’ fluorescence
rate is saturated, which ensures that an ions cooling dynamics is dominated by the 397 nm transition.
The two-level Doppler cooling model used in the simulations is then a realistic approximation,
with coupling strength () and detuning J. The effective spontaneous decay rate I' is assumed to be
dominated by the decay rate of the 4P; ;, — 45 , transition for ¥ °Ca™, I'/(277) = 21.6 MHz [165].

In the experiment, the detuning of the 397 nm beam is adjusted by changing the set-point of the
wavemeter’s frequency lock. The coupling strength is adjusted by changing the input power into the
double-pass AOM that enables the in-sequence switching. The values of ) and J require calibration,
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linking them to experimental settings of wavemeter frequency and AOM power. This is done in our
experiment by scanning these parameters, and determining the fluorescence rate Ry from a single

40Ca™ion. This rate is then numerically compared by least-squares regression with the model:

QZ

Rf=Amoy—r
ST 02 T2 1 4s?

(4-71)
where A is a constant proportionality factor. This model is a simplification of Eq. 4.61, where it is
assumed that the velocity 7 is negligibly small. To ensure this condition, the ion is first cooled with a
red-detuned beam for 15 ms3°. After cooling, the ion is probed with the Doppler beam for a duration
of 500 ps, with variable detuning and power. The short probe time ensures that even when the probe
beam is blue-detuned, the ion’s velocity remains low, as it changes negligibly in this duration. The
ions velocity can, in that case, be neglected in the model.

To examine RF heating, the two-ion crystal is deterministically forced to melt. The goal is to transfer
enough energy to the ions to generate a cloud, but ensure that the initial cloud energy is low enough
that RF heating dynamics can be observed, without the risk of ion loss. To generate the cloud, a
periodic force is exerted on the ions by applying an oscillating voltage on nearby trap electrodes,
near resonance with two radial motional frequencies. This process is colloquially termed “tickling”
[166], but is in practice way less cute than it sounds. The signal used is two-toned, since ions excited
in the two radial directions require less total energy to guarantee a phase transition to a cloud,
compared to excitation in one dimension. The initial cloud energy is thus lower, allowing us to observe
a larger overall increase of energy after melting. The frequencies of the tickling pulse are detuned
by about —100 kHz with respect to the motional mode frequencies. This helps to avoid recooling the
crystal before it melts [167, 168]: Motional modes in our anharmonic trapping potential decrease with
increasing oscillation amplitude. The oscillation frequency therefore approaches resonance with the
excitation field as the ions’ energy increases.

The DC electrodes of the surface trap would be the logical choice for where to apply the tickle
voltage. However, in our setup, signals applied to these electrodes are heavily filtered at the required
frequencies. Also, the signal lines are shielded and require inconvenient bypassing for an external
signal to be applied. We therefore elect to superimpose the tickle signal onto the RF trap drive, which
results in a tickle voltage on the RF electrodes. While the RF resonator does filter frequencies unequal
to the trap drive frequency, this effect is small compared to that of the DC filters.

The downside of using the RF electrode for tickling is that ions are ideally placed near the RF-null,
the inflection point of the saddle-shaped RF potential, where the field strength is at a minimum.
The tickle field couples poorly with ions whose micromotion is well-compensated. We therefore

intentionally apply a bias field of about VVk(bias) =100V m~!, with k = {x,y}. This field displaces the

ions by qVVk(blaS) / (mwy) from the trap center, which is less than a micrometer for our trap parameters.
Independent simulations confirm that this displacement negligibly affects the RF heating and Doppler
cooling rates.

An experimental sequence consists of a tickle pulse, during which cooling beams are off, followed
by a short (500 us) Doppler cooling pulse. During this pulse, fluorescence is collected by either a
PMT or a CCD camera. Jon melting is observed by a drop in fluorescence count rate of the PMT and a
lack of spatial resolution of the two ions on the camera. After melting, the fluorescence count rate
is used as an indicator of ion energy. The cooling pulse duration is kept short enough to avoid a
significant change in ion energy during the detection period. Short detection times, however, result
in a lower signal-to-noise ratio in the fluorescence count rate. The fluorescence rate of an ion cloud
in our experiment is on the order of 10? counts per second. Thus, on average, less than 1 count is
detected in the 500 ps detection time. To obtain an acceptable signal-to-noise ratio, an average count
rate is taken from ~ 1000 repetitions of the sequence. All sequences are concluded with a 20ms
high-power (> 100 MHz), far-detuned (> 120 MHz) Doppler cooling beam, which ensures that ions
are crystallized for following sequences.

Figure 4.11(a)(i) displays an example of measured fluorescence rate, as function of pulse duration of
the tickle field. The drop in fluorescence rate is an indication that the ions gain energy. Figure 4.11(b)

30 Back-of-the-envelope calculation shows that k - 7 < T'/20 at the Doppler limit
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displays corresponding CCD images. In these images, the horizontal axis is the axial direction and the
vertical axis is a radial direction, parallel to the trap surface. With increased tickle pulse duration, the
ion images become increasingly broader as a result of their increased motional amplitude. The fourth
image in Figure 4.11(b), taken after 100 ps, shows a single blur of fluorescence, indicating that ions
have melted.

After melting, the cloud is allowed to evolve for a fixed duration, without applying a cooling beam.
During this time, ions undergo RF heating. After this time, the fluorescence is probed with the PMT
and camera. An example of such a measurement is shown in Figure 4.11(a)(ii). The fluorescence count
rate decreases over time, which, as before, indicates an increase in ion energy. Accordingly, the cloud
size, seen in the CCD images in Figure 4.11(b), increases as function of wait time.

To extend the usefulness of the measured fluorescence rate beyond being just an “indication” that
RF heating is taking place, the rate is to be quantified in terms of ion cloud energy. This requires a
mapping of detected fluorescence to energy. We produce this mapping through a set of simulations
that estimate fluorescence rate as function of ion energy. The simulation works as follows:

For a given total secular energy Esec, a random set of motion parameters a;  is produced, constrained
by Equation 4.51. From this set of parameters, ion velocities v; () can be estimated using Eq. 4.67,

which are in turn used to find the Doppler cooling force IE;(D), using Eq. 4.24. An average over time of

the Doppler cooling force is calculated. This average force, <I-_“;(D)>t is directly linked to the amount of
“kicks’ received by an ion due to absorption and spontaneous emission, and is therefore proportional to
the fluorescence rate. However, this rate depends on the randomly chosen values of g; ;. This process
is therefore repeated 20 times for a fixed Esec, each with random value of 4;, and each producing

an average force <I:“;.(D) )t. From this set, we take an average of average forces, f = <(Z_3;-(D)>t>a, which is
proportional to the fluorescence rate, for a given value of Egec.

This procedure of generating f is repeated for values of Eg ranging from 0 to 30 meV. We thus
have a value that is proportional to a fluorescence rate as function of ion energy, f(Esec). This result
is scaled such that f(Esec = 0) = 1. We assume that in our experiment, the fluorescence rate from
a crystallized pair of micromotion-compensated ions corresponds to f(Esec = 0), where for this
particular fluorescence rate calibration, the previously mentioned bias field is disabled. The scaled
measured fluorescence rate can therefore be mapped directly to ion energy. An example of such a
mapping is shown in Figure 4.11(c). The mapping of fluorescence rate to energy is, however, not
unique for the entire domain: values of f ~ 1 can be produced by two distinct energies, as can be seen
on the left side of the plot. For our experimental settings, energies associated with melted ions are
outside of this range of ambiguity.

4.7.2  Experimental RF heating results

Figure 4.12 shows the ion cloud energy, inferred from measurements, as function of wait time, for
various radial motional frequencies. These frequencies are adjusted by changing the amplitude of the
RF voltage. It is difficult to adjust tickle frequency and duration in such a way to precisely choose
an initial cloud energy. Therefore, the initial energies for the various parameters are not necessarily
equal. Despite not having perfect control over the initial energy, the limited spread and drift in cloud
fluorescence rate of multiple repetitions of the experiment suggests that the initial energy is at least
stable and reproducible.

The lines represent the lower and upper boundary of the standard deviation of multiple simulation
runs, using the simplified RF heating model presented in Section 4.6.2. The displayed error bars of the
measured data are the uncertainty in the mean of the ~ 1000 measurement repetitions. Systematic
uncertainty, likely dominated by errors in the model that maps fluorescence to energy, is not included.

The initial energies used in the simulations are set to the measured initial energies. The motional
frequencies used in the simulation are the same as experimental values. Measured and simulated
data are in agreement for both the time-evolution of energy and the motional frequency dependence.
However, the measured data at the highest radial frequencies noticeably deviates from the simulated
curve. This deviation is attributed to a systematic error in determining energy from fluorescence: our
fluorescence-to-energy mapping is not well-defined, meaning that a small uncertainty in fluorescence
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Figure 4.11: Overview of fluorescence measurements in ion melting experiments, detected by (a) a PMT detector,
and (b) a CCD camera. (i) Ions are driven to melt by tickling. (ii) While melted, ions undergo RF
heating. (iii) Ions can be recooled and recrystallized by Doppler cooling. (c) Numerical simulations
allow us to map measured fluorescence to ion cloud energy.

could represent a large uncertainty in calculated ion cloud energy. In particular, note in Figure 4.11(c)
that at higher energies this mapping becomes increasingly more poorly defined, which could explain
the larger deviation from simulated results at higher energies in 4.12. Despite this deviation, by
estimating the diffusion constant from experimental data (E ~ V/Dt, see Section 4.6.2.3), it is still
possible to conclude that higher RF power, thus higher radial motional frequencies, lead to an increased
heating rate3*.

4.7.3  Experimental recrystallization results

The increasing ion energy due to RF heating can be opposed by applying Doppler cooling. We
experimentally investigate the cooling efficiency of a Doppler beam with various parameters, which
allows us to confirm the recrystallization trends shown in Figure 4.10.

In the experiment, following a 20 ms waiting time during which an ion cloud gains energy, a Doppler
cooling beam is applied. Variable parameters are the beam’s coupling strength (), detuning ¢, and the
cooling duration. As before, the energy of the cloud (or potentially crystal, if cooling has been efficient
enough) is probed by applying a short detection pulse. In our experiment, the hardware is limited
such that the detection pulse has the same coupling strength and detuning as the cooling pulse. The
measured fluorescence rate is therefore not independent of the settings of the cooling pulse, which
restricts the accuracy of the energy estimate. Furthermore, for higher beam detuning, the fluorescence
rate is less dependent on ion energy, which makes estimating it less precise. We therefore elect not to
use the fluorescence rate as an indicator for ion energy, but instead use the measured cloud size from
fluorescence collected on the CCD camera.

The size of the ion cloud on the CCD image could be translated into ion energy using a similar
method as before, when we mapped fluorescence rate to ion energy. However, since the perceived
cloud size depends on Doppler beam detunings and strengths, a unique mapping and calibration
would be required for each beam setting. We wish to avoid such a large look-up-table with yet another

31 Note 24 in Appendix e



100 CLASSICAL ION DYNAMICS IN AN RF PAUL TRAP

, 2.1,2.6 MHz
3 2932MH:
} 3.6,3.8 MHz

0 5 10 15 20
Time (ms)

Figure 4.12: RF heating experimental results, with a Ca - Ca cloud. Energies have been measured for three sets of
radial motional frequencies. Error bars represent the statistical spread in the acquired data. The thick
lines are an average of simulated energies, and the thin lines are the standard deviation.

possible source of systematic error. Therefore, instead of displaying data with an absolute scale of ion
energy or absolute cloud size, the results are presented as values of relative cloud size, scaled from the
cloud size at the moment Doppler cooling is initiated to the size of an ion crystal. In this simplified
presentation of the data, without attributing an exact cloud energy, we still determine to which degree
the beam parameters have reduced the cloud size, and potentially recrystallized, and thus provides an
indication of how well cooling has worked.

The measured ion cloud size after Doppler cooling is displayed in Figure 4.13, for various beam
coupling strengths Q3/(27r) = {44, 58, 80}, detunings 6/ (271) =-20 to -300 MHz, and pulse durations
up to 10ms. The results suggest that for coupling strengths below 80 MHz, recrystallization is only
achieved after 10 ms if the Doppler beam is detuned by -100 to -200 MHz. This agrees well with the
conclusion drawn from the recooling simulations shown in Figure 4.13.
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Figure 4.13: Cloud size after applying a cooling beam to an ion cloud for various times, for experimental
measurements and simulations. In the experiment, cloud size is determined from CCD imaged
fluorescence. We vary the detuning and coupling strength of the Doppler beam. Colors are scaled
with the mean cloud size at 0ms and crystal size as reference.

We directly compare the measured data with the simplified RF heating simulation (see Section
4.6.2). The cloud size is reconstructed from the simulations by correlating the ions’ position and
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fluorescence rates at the specific ion motion parameters a; ; within the respective detection window.
The simulation uses the same cooling beam detunings, pulse durations, and trap parameters, as in the
experiment. The coupling strength, however, is varied from 10 to 120 MHz. From this set, we calculate
which value of simulation coupling strength has the best agreement with the experimental data, in
terms of least-squares difference. The simulations with the best agreement are displayed alongside the
respective experimental results in Figure 4.13.

The value for coupling strength at which this agreement occurs differs by about a factor of two.
This discrepancy is attributed to model imperfections that arise from simplifying the Doppler cooling
process in our simulations. These imperfections affect the simulated results, but also the way that beam
parameters are calibrated in the experiment. For example, in this calibration, experimental data is fit
to a model that assumes a spontaneous decay rate of I'/(271) = 21.6 MHz, which neglects possible
decay to the 3D3, level. The modeled value of spontaneous decay I is thus an upper bound for the
effective two-level spontaneous decay. A possible discrepancy in I' leads to an incorrect determination
of experimental values of Q).

Barring this discrepancy, the simulated and measured data have a good qualitative agreement,
reaffirming the conclusion about the most efficient recooling settings: ensuring recrystallization of a Ca
- Ca cloud in 5ms requires a Doppler cooling beam with 3/ (27r) > 80 MHz and 6/ (27) ~ 150 MHz.
Recrystallization is delayed or unattainable with a lower beam power and/or incorrect detuning. For
example, typical Doppler cooling parameters for reaching the Doppler limit, O < T'and A =17/2,
deviate by more than an order of magnitude from the optimal recrystallization settings.

The experimental results, and their comparison to simulation data, are an indication of the mag-
nitudes of the scales of relevant parameters involved in RF heating: melted ions gain energy on the
order of electron volts per millisecond. Ion clouds can be efficiently recrystallized in several milliseconds, if
the recooling beam has a coupling strength and detuning that are both several times larger than the
cooling transition’s spontaneous decay rate. These conclusions are supported by the full ion dynamics
simulation, the simplified simulation, and the experimental results.

The conclusions are intentionally kept general, avoiding attributing specific values. For an experi-
mental physicist working with trapped ions, it is important to be aware of the orders of magnitude of
RF heating, not specific values. The results represent average heating and cooling rates. As has been
shown with the full ion dynamics simulation, the energy development of an energy cloud changes
notably from one cloud to the next. Owing to this chaotic variability, one could never accurately predict
what the exact energy development after a melting event in one’s experiment will be. It is therefore
much more constructive to have a general understanding of what average rates can be expected from
a particular set of trap parameters3?.

48 OUTLOOK: FURTHER CONSIDERATIONS OF RF HEATING

The majority of this chapter has covered simulations of RF heating for the case of two melted “°Ca™ions,
in ideal trapping conditions (i.e., no micromotion, harmonic trapping potentials, infinite trap depth,
etc.). Needless to say, there are many avenues for further investigation on melted ion motion. In this
section, as an outlook, we present simulations and offer brief discussions of other example scenarios
that warrant further investigation.

The simulation results are summarized in Figure 4.14. As in Figure 4.4, these plots display the
change in secular energy Egsec of 20 simulation runs (thin gray lines) using the full ion dynamics
simulation. Each run has a random RF drive phase, which creates a marginal variation in the initial
conditions. The thick dark line is the average energy of the runs. Additionally, for comparison, the
energy gain of the typical Ca - Ca ion cloud settings used throughout this chapter is shown (light blue
